12-8-2014

A Microstructural Constitutive Framework for Injured Ligament

Christina J. Stender
Boise State University

Evan Rust
Boise State University

Raquel J. Brown
Boise State University

Trevor J. Lujan
Boise State University
A Microstructural Constitutive Framework for Injured Ligament
Christina J. Sundgren, Evan Rust, Raquel J. Brown, Trevor J. Lujan
Northwest Tissue Mechanics Laboratory
Boise State University

Introduction
Clinical Significance
• Ligament injuries account for over 7 million hospital visits per year in the U.S.1.
• After one year of healing, injured ligament has only half the strength of native ligament2.
• Ligament injuries can lead to chronic disability due to poor structural quality of the healed tissue2,3.

Developing effective treatments for ligament injury requires an understanding of the functional impact of microstructural adaptations after injury.

Background
• The primary load-bearing constituent of ligament is type I collagen2.
• In native tissue, collagen fiber networks align to resist tensile deformation4-6.
• Fiber networks are altered after injury achieving only modest realignment over time2 (Fig. 1).

Challenge: Current ligament constitutive models assume parallel collagen fibers9-11, and are therefore unable to characterize the functional impact of structural alterations post-injury.

Hypothesis: The mechanical behavior of ligament with non-aligned fiber networks can be predicted using an anisotropic hyperelastic model that incorporates a fiber distribution term12.

Objective: Test if model can predict differences in the mechanical behavior of bovine ligament by only accounting for differences in fiber distribution.

Methods
Overview

1. Function: Mechanical Testing of Bovine Ligament
2. Structure: Measure Fiber Distribution
3. Model: Predict Stress using Fiber Distribution

VALIDATION

1. Function: Experiment (Fig. 2)
2. Structure: Confocal Microscopy

Challenge: Measuring the fiber distribution term k from the confocal images.

Solution: Custom Matlab program developed that discretizes fibers to build a Von Mises distribution to calculate k (Fig. 3).

3. Model: Anisotropic Hyperelastic Model with a Fiber Distribution Term10,12

$$
\sigma = \int_{\theta_0}^{\theta_0+\pi/2} \int_{\theta_0}^{\theta_0-\pi/2} P(\theta,k)\lambda(\theta)W_s(\theta)(a(\theta)\otimes a(\theta))d\theta \text{ where } P(\theta,k) = \frac{1}{\pi l_0(k)} e^{k \cos(2(\theta-\theta_0))}
$$

The summation of stress for the normal distribution of fibers.

Discussion

• Differences in the mechanical behavior of ligament with non-aligned fiber networks were predicted by only accounting for fiber distribution from imaging data.

Future Work
• Use specimen specific k.
• Test under complex loading configurations.
• Validate model for highly aligned fiber networks.

Clinical Significance: Once the functional impact of fiber distribution is characterized, the efficacy of mechanostimulation can be understood and adapted to enhance ligament strength and lessen chronic disability (Fig. 6).

Conclusion: Promising mathematical framework to model ligament at different healing stages by adaptation of the fiber distribution term, k.

Results

• The fiber distribution term k was calculated for each group (Fig. 4).
• A strong correlation existed between the anisotropic hyperelastic model that incorporates a fiber distribution term and experimental data (Fig. 5).

References
8. Provenzano, P. P. & Vanderby Jr., R. Matrix Biology, 1-14

Acknowledgements
Kind support from Phil Boysen, Stephen Porter, Jeremy Creschley, Diane Smith, Erica Morrill, and the Biomolecular Research Center.

Figures:
2. Mechanical test setup.
3. Image processing method.
4. Sample confocal image showing z-stack projection of the autofluorescence of fibers for the longitudinal non-aligned group.
5. Average strain-strain curves for the two groups.
6. Augmented soft tissue massage performed to enhance collagen fiber alignment.