Chest: City Event Summarization using Twitter

Deepa Mallela

Boise State University
CEST:
CITY EVENT SUMMARIZATION USING TWITTER

by
Deepa Mallela

A project
submitted in partial fulfillment
of the requirements for the degree of
Master of Science in Computer Science
Boise State University

April 2016
Project Title: CEST: City Event Summarization using Twitter

Date of Final Oral Examination: 15 April 2016

The following individuals read and discussed the project submitted by student Deepa Mallela, and they evaluated their presentation and response to questions during the final oral examination. They found that the student passed the final oral examination.

Maria Soledad Pera, Ph.D. Chair, Supervisory Committee
Amit Jain, Ph.D. Member, Supervisory Committee
Marissa Schmidt, M.S. Member, Supervisory Committee

The final reading approval of the project was granted by Maria Soledad Pera, Ph.D., Chair, Supervisory Committee. The project was approved for the Graduate College by John R. Pelton, Ph.D., Dean of the Graduate College.
Dedicated to my teachers
ACKNOWLEDGMENTS

I would like to thank Dr. Sole Pera for her support, patience, guidance and invaluable knowledge extended to me along my graduate studies. My project would not have been possible without her unending support and mentoring. The help and support she provided to me in this journey have been invaluable to me to attain this goal. I am honored and grateful to my committee members Dr. Amit Jain and Marissa Schmidt who provided time and energy to review this project. I would like to thank my amazing family and friends for the never ending love, care and support given to me over the years and I undoubtedly could not have done this without them.
ABSTRACT

Twitter, with 288 million active users, has become the most popular platform for continuous real-time discussions. This leads to huge amounts of information related to the real-world, which has attracted researchers from both academia and industry. Event detection on Twitter has gained attention as one of the most popular domains of interest within the research community. Unfortunately, existing event detection methodologies have yet to fully explore Twitter metadata and instead rely solely on identifying events based on prior information or focus on events that belong to specific categories. Given the heavy volume of tweets that discuss events, summarization techniques can be used to create overviews that capture key facts related to events. Unfortunately, these techniques are constrained to analyze only well-structured events.

In this project, we conducted an in-depth study on the usage of Twitter around Points-of-Interest to verify that indeed Twitter data can be used to detect events of a city. Thereafter, we designed and implemented CEST (City Event Summarization using Twitter), a tool that analyzes tweets to identify different types of events occurring in a city and generate the corresponding summaries for the detected events. Unlike existing methodologies, we developed CEST to process unstructured documents and take advantage of short hand notations, hashtags, keywords, geographical data, temporal information, and sentiment terms within tweets in-tandem to both detect and generate a brief overview of events without prior knowledge. Furthermore, we
introduced a novel strategy that analyzes sentiment and tweeting behavior of users over time to create a qualitative score that captures events’ appeal to attendees.
TABLE OF CONTENTS

ABSTRACT ... vi

LIST OF TABLES ... x

LIST OF FIGURES ... xii

LIST OF ABBREVIATIONS .. xiv

1 Introduction .. 1

2 Twitter data and Collection process 8
 2.1 Twitter API for data collection 8
 2.2 Data used in designing CEST 9

3 Twitter usage around PoI .. 12
 3.1 SNS usage at a location ... 12
 3.2 DGP Algorithm .. 14
 3.2.1 Spatial clustering .. 15
 3.2.2 Cluster bounding boxes 16
 3.3 Validation of Twitter usage using the DGP algorithm 16
 3.4 Further analysis on SNS usage 23

4 Event Detection ... 28
 4.1 Motivation for event detection 28
4.2 Approach for detecting events ... 29
 4.2.1 Determining activity regions .. 30
 4.2.2 Extracting candidate events .. 30
 4.2.3 Filtering candidate events .. 32
 4.2.4 Identifying more tweets related to events 35
4.3 Validation of proposed event detection strategy 36

5 Event Summarization .. 39
 5.1 Motivation for summarizing events 39
 5.2 Approach for generating event summaries 41
 5.2.1 Entity extraction .. 42
 5.2.2 Title, hashtags, and keywords 42
 5.2.3 Location and time .. 43
 5.2.4 Participants .. 44
 5.2.5 User behavior within event 44
 5.3 Rating Validation ... 48

6 Applying CEST on New York ... 51
 6.1 A case study of CEST on U.S. Open 51

7 Conclusions And Future Work .. 56
 7.1 Conclusion .. 56
 7.2 Applications .. 58
 7.3 Future work .. 60

REFERENCES ... 62
LIST OF TABLES

2.1 Datasets collected using Twitter public streaming API for the design and development of CEST ... 9

2.2 Steps for processing Twitter data .. 11

3.1 Dataset statistics for *Cities PoIs*, *Cities Tweets* and *Cities Flickr* 17

3.2 Web sources used for data collection in *Cities PoIs* 17

3.3 Fraction of tweets of a city that correspond to PoIs 24

3.4 Number of tweets in clusters created using the DGP algorithm in sample cities ... 26

3.5 Precision of area coverage of PoIs within three sample cities within Twitter and Flickr ... 26

4.1 Web sources used for collecting real-time events 37

4.2 Details of tweets in *real-time events* dataset 38

5.1 Details on words and emoticons in the sentiment dictionary we created for analyzing users’ opinions in tweets 46

5.2 Reviews collected for products from different domains on the Amazon . 48

5.3 Absolute Error computed using our proposed rating generation strategy on different domain of the Amazon dataset 49

6.1 Information pertaining to *NYC tweets* ... 52
6.2 Different real-time events detected in NYC 52
LIST OF FIGURES

1.1 Twitter statistics, image captured from LinkedIn 2
1.2 Trending real world discussions captured from Twitter on April 1, 2016,
along with tweet including mentions and hashtags from April 2, 2016 . . 3

2.1 Sample attributes in a tweet status .. 10
2.2 Sample status attribute, showcasing the geocoordinates of the current
location of a user ... 10

3.1 Tweets posted around Town Square in NYC on February 23, 2015 13
3.2 Overview of Distribution of Geotagged data around PoIs 14
3.3 Tweets posted around New York City on September 26, 2014 18
3.4 Clusters generated using Spatial Clustering on the tweets from Figure 3.3 19
3.5 Bounding box drawn for a cluster identified in Figure 3.4 19
3.6 Sample Points-of-Interest of New York 21
3.7 Sample Points-of-Interest of Chicago 21
3.8 Sample Points-of-Interest of Seattle 22
3.9 PoI coverage across three sample cities in Twitter and Flickr 22
3.10 Example of overlap between a bounding box of a PoI and a cluster
bounding box around the PoI in a sample dataset 25
3.11 Example of area of overlap of PoI bounding box with cluster bounding
boxes in Bootstrap samples .. 25
3.12 Recall of PoI coverage across Twitter and Flickr across 100 different bootstrap samples .. 27

4.1 CEST’s strategy for event detection discussed based on Twitter data . . 30
4.2 Activity regions detected in NYC on December 2, 2015, using DBSCAN 31
4.3 Frequency of tweets observed at a sample event: baseball game held between Toronto Blue jays and Boston RedSox on Jun 30,2015 32
4.4 A non-geotagged tweet that discusses an event 36

5.1 Different processing steps involved in generating event summaries from Twitter data ... 41

6.1 Event summary for the U.S. Open women finals 2015 created by CEST using NYC Tweets ... 53
LIST OF ABBREVIATIONS

API – Application Programming Interface

CEST – City Event Summarization Tool

DGP – Distribution of Geotagged data around PoIs

PoI – Point-of-Interest

REST – Representational State Transfer

SNS – Social Networking Sites

URL – Universal Resource Locator

Public Tweets – 1% of all Tweets collected using Twitter Streaming API to design CEST

NY Tweets – Tweets posted from New York city using Streaming API

Cities Tweets – Tweets posted from three cities collected to analyze Twitter usage

Cities Flickr – public Flickr photos collected from three cities to analyze Flickr usage

Cities PoIs – Points-of-Interest location of cities collected from multiple web sources

Real-time Events – Tweets of known events used to validate event detection method
CHAPTER 1

INTRODUCTION

Social Networking Sites (SNS) have evolved over the last decade with the increase in availability of internet resources [17]. Progressive use of smart phones and mobile applications for SNS have also played an important role in the spread of SNS. According to the 2015 Pew Internet and American Life Project survey [9], about 65% of the adult population in the United States uses SNS, unlike 7% in 2005, which is a tenfold jump in the past decade. SNS, which have become part of the daily routine of many individuals, are platforms for conversations that range from personal to political and local to international issues [58]. The varied nature of these conversations makes SNS act as real-time sensors to actions around the globe [14, 17, 28, 45].

There are several types of SNS, including blogs, microblogs, social networking services, content sharing & discussion sites, and virtual worlds. In general, SNS aim to establish connections among users around the world. However, each of them has a unique approach to achieve this goal: blogs enable users to express their thoughts by writing articles and sharing them on the web, whereas virtual worlds allow users to explore computer-simulated environments within online communities.

One of the most widely-employed SNS are microblogging sites, on which users can share their experiences using short texts [9, 36]. Among popular microblogging sites, such as Pinterest [8], Plurk [5], Tumblr [3], and Yammer [6], Twitter [1] surpasses them
all as the fastest growing microblog in the world (see Figure 1.1, which is captured from LinkedIn\(^1\), for recent statistics related to the use of Twitter). According to a 2014 report by AAPOR (American Association for Public Opinion Research), about 18% of adults use Twitter in the United States \([36]\), a percentage that increases to 23% worldwide \([59]\). The number of Twitter users who participate in about 500 million daily interactions, grows at a rate of 135,000 new users per day \([11]\). These continuous interactions, which are encouraged by mobile applications that allow quick and easy communication among users without impacting their mobility\(^2\) \([51]\), lead to producing enormous amounts of data \([20]\).

![Figure 1.1: Twitter statistics, image captured from LinkedIn](image)

Twitter users play the role of producers and consumers, i.e., each user becomes a reporter that not only absorbs and assembles information (e.g. breaking news), but also propagates opinions and stories about themselves or others pertaining to their interests \([36]\). In addition, users are not constrained on topics discussed, languages used, or number of tweets\(^3\) they can post on the site, due to which Twitter users

\(^1\)https://www.linkedin.com/pulse/2015-social-media-stats-trends-images-part-1-wahiba-chair-mba

\(^2\)Mobility refers to users’ ability to post content online even when they are moving.

\(^3\)A message posted on Twitter is called a *tweet*.
create about 7,041 tweets per second [10], allowing Twitter to serve as a source of timely and fresh information (see Figure 1.2) [58].

The immediacy of Twitter data, the metadata associated with every tweet (e.g., geolocation, timestamp, user, text, user mentions, and hashtags) and user (e.g., name, profile picture, profile status, home location, followers, and Twitter handle) and the fact that Twitter data is publicly available, have attracted the attention of researchers for the last nine years [35]. This encouraged research on multiple areas of interest, including Twitter community detection using information flow [23, 59]; generation of geographical recommendations based on users’ Twitter activity [51]; identification of localized language diversity [33], and mining of travel patterns based on Twitter usage [17, 59]. Given that users tend to tweet to comment on or share their experiences about events they have attended [48], a vast number of tweets refer to events [44]. Consequently, event detection is the area of study that has gained the most interest among works that exploit Twitter data [14, 31, 45, 48].

An event can refer to any activity that happens within a time interval, especially one that receives attention from people. Some examples of events include fire accidents, earthquakes, concerts, and conferences. Identifying events that are being
discussed on Twitter provides a means to acquire knowledge about incidents that are taking place across the world. While news channels, internet sources and magazines may be considered to gather information about events occurring on a daily basis, none of these mediums provide a complete list of events that occur. On the other hand, Twitter is a platform where almost all events are discussed more often, which makes it a more effective source to get information about all categories of events [45, 48]. A category or type of event represents the motive behind the event occurrence, e.g., political versus sports events. Different types of events are associated with different activities, e.g., a debate can occur within a political campaign, whereas a goal happens in a soccer game. Unfortunately, most of the techniques developed for event detection from Twitter data have focused on identifying a specific category of events, and thus are not applicable to detect all types of events.

Detection of various types of events taking place at different cities or regions provides a medium for people to learn about their surroundings and create situational awareness [45, 48], i.e., “the perception of the elements in the environment within a volume of time and space, the comprehension of their meaning, and the projection of their status in the near future” [48]. However, event detection techniques that explore Twitter data rely on prior knowledge, in terms of specific locations where events can take place or vocabulary (hashtags and words that are to be part of event discussions4) that can describe specific events.

In addition to detecting events, there is an interest within the research community to generate brief descriptions of the identified events that convey important aspects of the event [36, 50]. However, techniques that explore event summarization using

4According to Li et.al. [32], sample keywords such as fire, accident, and earthquake can be considered for identifying disaster related events.
Twitter data depend on prior information about the events or are only able to analyze structure rich events [16, 50].

To address the limitations of existing event detection and summarization techniques, we developed CEST-City Event Summarization using Twitter, a tool that detects and summarizes the events\(^5\) that occurred within a city or region based on Twitter data collected from that location over a period of time. Twitter is a place where individuals discuss their opinions and reactions about events, which is why Twitter is an ideal platform to learn about peoples’ reaction to events without imposing any conscious burden on the users. In building CEST, we introduce novel approaches for identifying different categories of events that are discussed on Twitter without prior information about them and create qualitative descriptions of events based on text and varying users’ sentiments along lifetimes of events. To the best of our knowledge, this is the first work that focuses on summarizing events based on tweets posted across a city without manual intervention.

Designing and developing CEST involves three major milestones:

1. Studying Twitter usage around Points-of-Interest\(^6\) (PoIs), by observing the spatial distribution of tweets within a city. We do so to understand how likely the citizens of a city are to use Twitter to share their experiences when they visit or come across an attraction or an exciting moment. As PoIs are the obvious places where people may visit very often, we develop a novel technique that identifies the coverage of activities of a city by analyzing the usage of Twitter around these locations.

\(^{5}\)In this report, we refer to events that are geographically bounded, i.e., events that happened at particular locations.

\(^{6}\)Points-of-Interest are locations or places that people may often find useful or interesting, such as museums and theaters [59].
2. Detecting events based on spatio-temporal characteristics of the tweets. In accomplishing this task, we created an event detection technique that identifies different events that occur in an area or city we monitor, irrespective of their categories, which other research works exploring event detection have failed to address [42, 48]. In general, events consist of common characteristics, such as location, duration, and keywords, which describe each event [40, 42]. We utilize these features inferred from text and metadata of Twitter data for our detection process, which makes it generic, i.e., applicable to any data source that possesses these characteristics.

3. Creating a profile of an event based on tweets that are related to the event. In doing so, we develop an event summarization technique that generates a brief overview that captures details related to events, such as title, time, location, and topics discussed. In addition, we provide a rating for each event by analyzing the variation of users’ sentiments expressed on Twitter across the timeline of the event.

The remainder of this document is organized as follows: In Chapter 2, we provide a brief description on the dataset collected from Twitter. We also discuss the different techniques used in the data collection process and introduce datasets created to aid the design and development of CEST. In Chapters 3, 4 and 5, we discuss each of the major milestones associated with this project, i.e., study Twitter usage around PoIs, event detection, and event summarization. In each of these chapters we present the motive and importance behind each proposed milestone for CEST. Along the way, we discuss previous works that have been proposed to examine Twitter data that played an important role in designing CEST. We also highlight our findings and the accuracy
of our proposed methodologies. In Chapter 6, we present a case study of CEST on Twitter data collected from New York city over a 24-hour time interval. Lastly, in Chapter 7, we conclude our report, discuss the application areas where our system may be useful, and suggest directions for future work.
CHAPTER 2

TWITTER DATA AND COLLECTION PROCESS

In this chapter, we discuss Twitter data used in designing, developing, and evaluating CEST.

2.1 Twitter API for data collection

Twitter offers two publicly accessible developer APIs: a REST interface and a Streaming API [54, 55]. The REST API offers a list of HTTP endpoints for application developers to interact with Twitter. To prevent abuse, all endpoints are strictly rate limited on a per-user basis allowing authenticated applications to operate as proxies for users, which makes data collection prohibitively slow. While the REST API pulls a tweet for every request, a Streaming API pushes a new tweet to an end user at regular intervals of time. To avoid rate-limits we used the Streaming API for Twitter data collection. This API enables application users to collect tweets in two different ways: with and without filter parameters. Without parameter values, it collects a 1% random sample of all tweets posted online. With parameters, it only draws from tweets that meet the specified criteria, not changing the sample size (i.e., 1% of all tweets that match the criteria) but allowing the retrieval of more focused data. The filter parameters that can be used on the API are “users”, “location bounding box” and “keywords”, which allow developers to collect tweets either posted by particular
users, generated at a given location, or that contain specific keywords, respectively. In the design and development of CEST, we collected data using the streaming API with and without applying filter parameters.

2.2 Data used in designing CEST

For the design of CEST, we collected tweets during a 5-month period, with no filter parameter values from public streaming API, and created the *Public Tweets* dataset. Analyzing this dataset helped to understand how the Twitter API collects data among public tweets and how users tweets vary in different cities. In addition to the *Public Tweets*, we also collected tweets by setting a “*location bounding box*” filter parameter to the geographical coordinates of ‘New York’ over a 4-month period to create the *NY Tweets* dataset. Both datasets are very large, which can present scalability challenges for data processing. Consequently, to clean and process the data using distributed processes we stored these datasets on Hadoop. Further details on *Public Tweets* and *NY Tweets* datasets are shown in Table 2.1.

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Date range of collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Tweets</td>
<td>4.2TB</td>
<td>Jan 2015 - May 2015</td>
</tr>
<tr>
<td>NY Tweets</td>
<td>54GB</td>
<td>Aug 2015 - Nov 2015</td>
</tr>
</tbody>
</table>

Table 2.1: Datasets collected using Twitter public streaming API for the design and development of CEST

A data unit collected from Twitter, which is a tweet combined with other metadata attributes, is called a *status*. Each status (see a sample in Figure 2.1) is in JSON format and consists of an average of 40 different attributes, some of them are optional. These attributes hold information related to users and locations. For instance, for a user Twitter captures *first* and *last names*, *twitter handle*, *profile picture*, *time of*
account creation, home location, current geolocation (see a sample in Figure 2.2), timestamp and profile URL, whereas for a place (i.e., location) it gathers details such as country, country-code, full-name of place and place-type. While these attributes can be analyzed to learn facts related to users’ personal information and locations, the text attribute can be examined for capturing users’ opinions.

Figure 2.1: Sample attributes in a tweet status

```
"text": 
  "@jasoncosta  @themattharris Hey! Going to be in Frisco in October. Was hoping to have a meeting to talk about @thinkwall if you’re around?",
  "retweet_count": 0,
  "in_reply_to_status_id_str": null,
  "id": 242613977966850048,
  "retweeted": false,
  "in_reply_to_user_id": 14927800,
  "user": {
    "profile_sidebar_fill_color": "EEEEEE",
    "profile_sidebar_border_color": "000000",
    "profile_background_tile": false,
    "name": "Andrew Spode Miller",
  }
```

Figure 2.2: Sample status attribute, showcasing the geocoordinates of the current location of a user

```
"coordinates": {
  "coordinates": {
    -75.14310264,
    40.05701649
  },
  "type": "Point"
}
```
The text attribute of each status (the actual text message composed by a Twitter user) is limited to 140 characters. This size constraint has led to new ways of expressing thoughts using shorter texts and relying on different vocabulary, such as hashtags, user mentions and short URLs. Each of these notions in a tweet has a special meaning and purpose. A hashtag represents a topic or issue a user is talking about, whereas a user mention represents other users being referred to in a tweet and short URLs’ are links to any web source that the user is talking about.

In the process of designing and developing CEST, we depend upon a subset of status attributes. For that purpose we cleaned and extracted only the required attributes of each tweet in the aforementioned datasets. As shown in Table 2.1, the datasets collected from Twitter are large and hence are stored on Hadoop. Given that data collected from Twitter contains tweets composed using different languages, additional metadata and attributes which are not utilized in building, we clean and filter out the unwanted information using a MapReduce program, which follows the steps illustrated in Table 2.2.

<table>
<thead>
<tr>
<th>Filter</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language Filter</td>
<td>Remove non-english tweets</td>
</tr>
<tr>
<td>Deletion Notices</td>
<td>Remove tweets that have deletion notices</td>
</tr>
<tr>
<td>Attributes Extraction</td>
<td>Extract required attributes from status:</td>
</tr>
<tr>
<td></td>
<td>geolocation, timestamp, userId, tweetId and text</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Convert tweets text to lowercase</td>
</tr>
<tr>
<td>URLs Removal</td>
<td>Remove URLs in the tweet text</td>
</tr>
</tbody>
</table>

Table 2.2: Steps for processing Twitter data

7Twitter API honors deleted messages (i.e., tweets that are posted and deleted later) while collecting data and pushes status messages of delete notices to the end user.
CHAPTER 3

TWITTER USAGE AROUND POI

In this chapter we discuss the motive behind the study of Twitter usage around Points-of-Interest (PoIs). We present the design and development of a domain independent mechanism to measure Social Networking Sites (SNS) usage around PoIs, along with the experiments conducted to verify SNS usage around PoIs based on the proposed algorithm.

3.1 SNS usage at a location

As Web 2.0/3.0 and pervasive computing have matured, SNS have become a main communication tool to instantly exchange and share information and ideas [30]. Users usually express their experiences on social media when they come across an unusual or exciting activity, such as events. Events tend to be associated with physical locations. Given that PoIs are locations that attract people, it is not uncommon for PoIs to correspond to venues where events take place. However, there is not known correlation between SNS usage at events and PoIs.

SNS capture information about users’ physical locations when they post content online using GPS enabled devices. This geolocation information collected over a period of time can be used to examine usage variation of SNS around PoIs. For example, Figure 3.1 depicts tweets posted from New York, which are highly congregated around
Town Square. Few research works have focused on revealing SNS usage patterns around PoIs. The study in [30] verifies that users tend to post pictures around PoIs, and their posting patterns change based on time of the day and season of the year. Similarly, the authors in [56] have focused on learning about users’ interests towards PoIs based on their SNS activity around PoIs. Researchers in [59] explored SNS data to analyze users’ travel patterns at the level of local tourist destinations. Existing techniques that analyze the usage of SNS around PoIs [30, 51] consider geotagged data generated on Flickr [4], FourSquare [7], and Whrrl [2]. However, to the best our knowledge, no work has studied or verified the usage of Twitter around PoIs.

Figure 3.1: Tweets posted around Town Square in NYC on February 23, 2015

In CEST, we focus on identifying events that occurred in a city, which is why we study Twitter usage around different PoIs of cities to understand if Twitter is the right medium or if it possesses the necessary characteristics, such as spatial distribution of tweets at a location, to identify events. Unfortunately, there is no generic strategy
that can be applied on SNS to examine their usage around PoIs. Consequently, we
developed DGP (Distribution of Geotagged data around PoIs), an algorithm that
detects SNS activity across PoIs based on geographical data points that capture the
check-in locations of users. This algorithm does not rely on a specific SNS information,
so it can be used to analyze any SNS data, including Twitter data, to identify its
usage around PoIs.

3.2 DGP Algorithm

DGP algorithm (see pseudocode in Algorithm 1) considers two data sources: Geo-
tagged Dataset collected from SNS, i.e., user check-in information, and a set of data
points that refer to PoI locations of a city (PoI Dataset) around which we want to
determine SNS usage. As shown in Figure 3.2, DGP algorithm has two main steps,
spatial clustering and cluster bounding box, which are discussed in details below.

Figure 3.2: Overview of Distribution of Geotagged data around PoIs
Algorithm 1 DGP - Distribution of Geotagged data around PoIs

```plaintext
input : Geotagged Dataset - GD, PoI Dataset - PD
clusters = DBScan(GD)
clusterboundingboxes = null
for cluster in clusters do
    clusterboundingbox = Draw Bounding Box with extreme points in cluster
    add clusterboundingbox to clusterboundingboxes
end for
for PoI in PD do
    for clusterboundingbox in clusterboundingboxes do
        if PoIcoordinates is within clusterboundingbox then
            PoI is detected
        end if
    end for
end for
```

3.2.1 Spatial clustering

To find the places where multiple users checked-in within a region, we group geo-
cordinates in Geotagged Dataset based on their physical proximity. For cluster-
ing geotagged data to capture regions of prominent SNS usage, we use DBSCAN
(Density-based spatial clustering of applications with noise) [46], which is a popular
density-based clustering approach [30]. DBSCAN searches for areas of high density
with two parameters that represents areas of given neighborhood (Eps) containing at
least a minimum number of points ($MinPts$). Location points which satisfy Eps and
$MinPts$ parameters are grouped together as a cluster.

By using this clustering algorithm, we identify densely-distributed locations, each
of which represents a cluster. Data points in Geotagged Dataset that are sparsely
distributed and thus not included in any of the generated clusters are no longer
considered by the DGP algorithm.
3.2.2 Cluster bounding boxes

We further examine the clusters generated in Section 3.2.1 to identify those that include tweets posted in the proximity of PoIs. Given that each cluster is a collection of geographical points, there is a chance that more than one cluster can be created around a PoI. To identify such situations and determine the region to which the PoI belongs, i.e., to identify a region where the cluster data points are spread, we draw bounding boxes around each cluster using extreme geographical coordinates of geotagged data within that cluster. A cluster bounding box defines the area of a region that covers the spread of data points of a cluster.

After the cluster bounding boxes are drawn, each PoI in PoI Dataset is examined to see if it lies within any of those generated cluster bounding boxes. SNS usage is said to be observed around a PoI if its geographic coordinates lie within at least one of the cluster bounding boxes created within geotagged data.

3.3 Validation of Twitter usage using the DGP algorithm

To verify the usage of Twitter around PoIs, we consider two data sources, which are used as inputs to the DGP algorithm: Cities Tweets and Cities PoIs. Cities Tweets includes a set of tweets collected on September 26, 2014 using Twitter public streaming API from three cities: New York, Chicago and Seattle, by extracting the tweets that lies within the geographical coordinates of cities. We selected these sample cities based on their variation in population size. The number of tweets collected from each city, as well as their respective population size, are shown in Table 3.1.

Cities PoIs includes data points that correspond to PoIs of the sample cities. Each of these data points consists of attributes about the corresponding PoI: name,
<table>
<thead>
<tr>
<th>City</th>
<th>New York</th>
<th>Chicago</th>
<th>Seattle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population size</td>
<td>8.406 million</td>
<td>2.719 million</td>
<td>652,405</td>
</tr>
<tr>
<td>Metropolitan population</td>
<td>20.2 million</td>
<td>9.52 million</td>
<td>3.61 million</td>
</tr>
<tr>
<td># of PoI</td>
<td>365</td>
<td>67</td>
<td>62</td>
</tr>
<tr>
<td># of Tweets</td>
<td>42,142</td>
<td>10,925</td>
<td>6,589</td>
</tr>
<tr>
<td># of Flickr data points</td>
<td>39,811</td>
<td>20,801</td>
<td>19,379</td>
</tr>
</tbody>
</table>

Table 3.1: Dataset statistics for Cities PoIs, Cities Tweets and Cities Flickr

geolocation (latitude and longitude) and *PoI bounding box*. As we assume that a PoI is usually spread around an area, we draw a bounding box around a PoI with a radius of 0.35 km\(^8\) to represent that area. Each PoI bounding box is represented by four extreme points: minimum latitude, maximum latitude, minimum longitude, and maximum longitude. To create *Cities PoIs*, we focused on online resources, including tourist and city development websites which archive information about places around a city to provide a site map of a city to visitors. We examined details from many sources and collected data from websites which were given the highest page rank by Google and were retrieved in response to the following keyword query “[city] points of interests”. Details on the number of PoIs collected from each city are displayed in Table 3.1, whereas web sources from which we collected PoIs information for three cities for our experiments are shown in Table 3.2.

<table>
<thead>
<tr>
<th>City</th>
<th>Web Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>https://www.vacationsmadeeasy.com/NewYorkNY/pointsOfInterest/</td>
</tr>
<tr>
<td>Chicago</td>
<td>http://www.vacationsmadeeasy.com/ChicagoIL/pointsOfInterest/</td>
</tr>
<tr>
<td></td>
<td>https://www.newyorkpass.com/En/new-york-attractions/</td>
</tr>
</tbody>
</table>

Table 3.2: Web sources used for data collection in Cities PoIs

\(^8\)We picked a radius=0.35km to cover the possible region of a biggest PoI location in the dataset, i.e., average area occupied by a sport stadium. This is for experimental purpose only, and can be adjusted, if needed.
After the input datasets for the DGP algorithm were created, we tuned the parameters for DBSCAN, which are used for spatial clustering in the DGP algorithm. To select values for parameters, we conducted an empirical study across multiple tweet samples of different cities and selected the parameter values that enable to cluster maximum number of data points from sampled collections. Based on the results generated by clustering geotagged data using different parameter values, we observed that $Eps=0.002$ and $MinPts=5$ yielded suitable clusters for the data points distributed across different cities. The maps shown in Figures 3.3, 3.4 and 3.5 provide a visual representation of input data points, clusters, and bounding boxes generated using the DGP algorithm on a sample of tweets (extracted on September 26, 2014) from New York.

![Figure 3.3: Tweets posted around New York City on September 26, 2014](image)

To quantify the usage of SNS around PoIs based on the analysis of the DGP algorithm, we use the PoI coverage measure (presented in Equation 3.1), which computes the proportion of PoIs detected across a city with respect to the number
Figure 3.4: Clusters generated using Spatial Clustering on the tweets from Figure 3.3

Figure 3.5: Bounding box drawn for a cluster identified in Figure 3.4

of known PoIs in the city. We consider Cities PoIs as our PoI gold standard, as this represent the original PoI locations of cities.

\[
\text{PoI coverage} = \frac{|GD|}{|PD|}
\]

(3.1)

where |GD| is the number of PoIs detected in Geotagged Dataset from SNS (e.g.,
Cities Tweets) using the DGP algorithm and |PD| denotes the number of PoIs in gold standard, which is Cities PoIs in our case.

As shown in Figure 3.9, based on the PoI coverage values computed using the DGP algorithm, Cities Tweets, and Cities PoIs, we see that in New York city there is more than 73% coverage of PoIs. This demonstrates that the DGP algorithm was able to identify Twitter usage around three-quarters of the PoIs of New York city. Twitter usage was also spotted around 45% and 68% of the PoIs in Chicago and Seattle, respectively, which is lower than what was identified in New York. However, examining Cities PoIs, we noticed that PoIs in New York city were centralized within few locations (as shown in Figure 3.6). Because of this centralization there is likeliness of finding more tweets in that area. This enables our DGP algorithm to find more than one PoI in a single cluster. On the contrary, PoIs in Chicago and Seattle were observed to be located far apart from each other (as illustrated in Figure 3.7 and Figure 3.8, respectively), such that fewer check-ins are observed around PoIs of these cities, than New York city. Given that there are fewer tweets (i.e., MinPts) available from Chicago and Seattle, clusters around PoIs in these cities were not created using DBSCAN, which in turn causes these PoIs undetectable by the DGP algorithm.

To give context to our Twitter usage around PoIs results, we replicated our study using Flickr\(^9\) data. We chose Flickr for comparison purposes because other works have already demonstrated that Flickr is generally used around PoIs [24, 30, 59]. To conduct this study, we created Cities Flickr by collecting Flickr data on the same day September 26, 2014 for New York, Chicago, and Seattle using Flickr REST API. Unlike Twitter, Flickr allows users to restrict sharing their photos publicly. Hence, we have collected only public photos of Flickr. Details on the number of data points

\(^9\)Flickr is a SNS that allows users to archive pictures, also known for its usage around PoI [30].
in Cities Flickr are presented in Table 3.1.

As shown in Figure 3.9, based on the results obtained in terms of PoI coverage from applying the DGP algorithm to Cities Flickr, Flickr was used around more than 60% of the PoIs across all three cities. Even though New York has higher population than Chicago, Flickr usage around PoIs of Chicago is higher than New York. We have noticed that in Cities PoIs, Chicago has a higher percentage of scenic locations
Figure 3.8: Sample Points-of-Interest of Seattle

Figure 3.9: PoI coverage across three sample cities in Twitter and Flickr
and amusement parks than New York, which we believe, can be a factor that can influence the results of PoI coverage in Chicago.

From the PoI coverage illustrated in Figure 3.9 for Twitter and Flickr, we perceive that Flickr usage around PoIs is higher than Twitter. However, the manner in which Twitter and Flickr samples were collected may play an important role that can have an effect on the computed results of PoI coverage. Some of the differences in Cities Tweets and Cities Flickr are the volume of data points collected across three sample cities, rate limits of API’s in collecting the data, and percent of geotagging across different SNS (i.e., 2% of the data from Twitter is geotagged whereas 4% of Flickr data is geotagged).

3.4 Further analysis on SNS usage

The DGP algorithm measures SNS usage around PoIs under the assumption that a PoI refers to a single geocoordinate. Therefore, it identifies a SNS usage around a PoI if the PoI geocode appears in the SNS geotagged data collected for a particular period of time. However, a PoI is a physical location that corresponds to a region rather than a single geocoordinate, and thus a single point may not represent the entirety of the corresponding location. For instance, a baseball stadium is a PoI which is built in an area that includes a field of 14,864 m² and seating arrangements for the audience, which illustrates that a single geocode does not represent the whole area of the stadium.

The analysis presented in Section 3.3 is based on data collected over a particular period of time. However, SNS data is dynamic in nature (i.e., can change every day). To establish confidence and accuracy on the reported results, we conducted further
experiments using \emph{Cities Tweets} and \emph{Cities Flickr}. To simulate the dynamic nature of SNS data we used a random sampling Bootstrap technique \cite{21}. In statistics, bootstrapping can refer to any test or metric that relies on random sampling with replacement. Bootstrapping allows assigning measures of accuracy (defined in terms of bias, variance, confidence intervals, prediction error or some other such measures) to sample estimates.

From results of the DGP algorithm we observed that not all the tweets from a city correspond to PoIs (see Table 3.3). To understand SNS usage across the area of a PoI and establish accuracy of \emph{PoI coverage} results obtained, we examined the relevant average area covered by SNS around a PoI across different samples. To do that we use the metric precision (in Equation 3.2), that computes the overlap of \emph{PoI bounding box} in \emph{Cities PoIs}, with that of the \emph{cluster bounding boxes} where a PoI was detected in bootstrap samples. Figure 3.10 shows a scenario of area overlap between a cluster bounding box of a PoI, whereas Figure 3.11 illustrates examples of possible areas of overlaps between cluster bounding boxes (blue) and the PoI bounding box (red) in BootStrap samples.

<table>
<thead>
<tr>
<th>City</th>
<th>New York</th>
<th>Chicago</th>
<th>Seattle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total tweets</td>
<td>42,142</td>
<td>10,925</td>
<td>6,589</td>
</tr>
<tr>
<td># of tweets correspond to PoI</td>
<td>3,354</td>
<td>2,503</td>
<td>3,202</td>
</tr>
</tbody>
</table>

Table 3.3: Fraction of tweets of a city that correspond to PoIs

\[
\text{precision} = \sum_{i=1}^{n} \frac{x_i}{y_i}/n \tag{3.2}
\]

where \(\text{Pol}_i\) is the \(i^{th}\) PoI in \emph{Cities PoIs}, \(y_i\) denotes the area of original bounding box of \(\text{Pol}_i\) in \emph{Cities PoIs}, \(x_i\) denotes the proportion of area of overlap between the region
Figure 3.10: Example of overlap between a bounding box of a PoI and a cluster bounding box around the PoI in a sample dataset

Figure 3.11: Example of area of overlap of PoI bounding box with cluster bounding boxes in Bootstrap samples

of a cluster bounding box in a sample and \(y_i \), and \(n \) denotes the number of PoIs in Cities PoIs.

The precision scores computed across the clusters of samples of the three different cities within Cities Flickr and Cities Tweets are shown in Table 3.5. These values indicate that SNS data does not cover the whole area around a PoI, i.e., users are not posting on Twitter and Flickr from every single geographical coordinate around a PoI. As shown in Table 3.4, clusters generated around PoIs vary in sizes, i.e., in terms of number tweets that are assigned to each cluster, which further illustrates that the distribution of tweets around PoIs of three cities is different. Hence, the DGP algorithm discovers the presence of a PoI location in geotagged data but this
does not demonstrate specific details on the area around a PoI where SNS is used.

<table>
<thead>
<tr>
<th>City</th>
<th>Average tweets in clusters</th>
<th>Maximum tweets in clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>17.80</td>
<td>7,675</td>
</tr>
<tr>
<td>Chicago</td>
<td>11.40</td>
<td>1,260</td>
</tr>
<tr>
<td>Seattle</td>
<td>30.74</td>
<td>2,645</td>
</tr>
</tbody>
</table>

Table 3.4: Number of tweets in clusters created using the DGP algorithm in sample cities

<table>
<thead>
<tr>
<th>City</th>
<th>New York</th>
<th>Chicago</th>
<th>Seattle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twitter</td>
<td>0.326</td>
<td>0.188</td>
<td>0.477</td>
</tr>
<tr>
<td>Flickr</td>
<td>0.843</td>
<td>0.689</td>
<td>0.786</td>
</tr>
</tbody>
</table>

Table 3.5: Precision of area coverage of PoIs within three sample cities within Twitter and Flickr

As mentioned earlier, data generated on SNS is dynamic in nature and SNS usage around PoIs identified by the DGP algorithm can change among different datasets. To check the bias of computed PoI coverage based on the variations in data generation, we conducted another experiment using Twitter and Flickr data and measured the recall across BootStrap samples. Recall (as defined in Equation 3.3) is calculated based on the number of PoIs observed in a BootStrap sample compared to the number of PoIs observed in the original dataset.

\[
\text{recall} = \frac{|BS|}{|OD|} \tag{3.3}
\]

where \(|OD|\) denotes the number of PoIs observed in a dataset (i.e., either Cities Flickr and Cities Tweets, in our case) and \(|BS|\) denotes number of PoIs observed in a random sample, i.e., a BootStrap sample.

Recall standard error bar limits (which are plotted in Figure 3.12) are calculated using \(\sigma \pm s\), where the mean of recall is denoted by \(\sigma\) and standard deviation is
Figure 3.12: Recall of *PoI coverage* across Twitter and Flickr across 100 different bootstrap samples denoted by s. Recall values and the error bars calculated across random samples demonstrates that *PoI coverage* computed by applying the DGP algorithm changes based on data generated on SNS.

From the results observed on SNS usage using the DGP algorithm based on *PoI coverage*, precision on the area of coverage around PoIs, and recall on SNS usage across varied samples, we see that even though Twitter is not being used at every single geocoordinate (i.e., around the whole area) of a region around a PoI, people are being active within those regions. This demonstrates that Twitter is used around places of activities and that Twitter data can be used to detect events.
CHAPTER 4

EVENT DETECTION

In this chapter we describe the design and development of our event detection method and discuss the experiments conducted using Twitter to validate its applicability.

4.1 Motivation for event detection

In Chapter 3, we applied the DGP Algorithm on Twitter data and verified that Twitter is being used around PoIs, i.e., people tend to tweet to share information and their thoughts while they are at diverse locations. Unfortunately, not every event happens at a predefined location or PoI, which is why recognizing events within a region over a period of time is not a trivial task. The real-time nature of Twitter, the rich attributes associated with its data, and the fact that tweets capture diverse perspectives from users across a region, make Twitter an ideal source to explore in order detect events. Many research works have focused on detecting events by analyzing the patterns of data generation on Twitter [31, 42, 45, 48]. However, the proposed strategies often detect specific categories of events, for example, earthquakes and disaster related events [45], small-scale incidents, as fire and road accidents [48], and events associated with celebrities [42]. To the best of our knowledge, no technique

\footnote{Recall that events refer to unusual activities that occur at diverse locations and receive attention from multiple people, e.g. football games, presidential debates and music concerts.}
has been developed for simultaneously detecting all types of events, which is needed to capture events across a city.

4.2 Approach for detecting events

For event detection, we designed and developed a technique that considers spatial, temporal, and textual features observed across all events from Twitter data. Our method strategy (depicted in Figure 4.1) tweets collected from a given city over a period of time to identify events regardless of their category. We refer to the Twitter data collected within a 24-hour time interval in a given location as TD. Even though Twitter collects tweets posted from the region specified by bounding box coordinates, it does not capture the specific current location of user unless a tweet is posted from geolocation enabled device. Consequently, not all tweets in TD have geolocation information associated with them, which is why we consider two subsets of TD: TG, which refers to the set of tweets with geolocation that are employed for event detection, and TNG, which are the remaining tweets in TD that are analyzed to capture descriptive details about events.

To detect events of a city, we first determine the regions of a city where Twitter activity is observed using TG. Once these regions are found, we extract the group of tweets at each region that potentially correspond to an event, which we consider as a *candidate event*. Thereafter, we further filter *candidate events* to preserve the ones that actually correspond to real life events. Lastly, tweets in TNG are examined to identify further discussions corresponding to events. The different techniques and features used for detecting events from a stream of tweets are described below.
4.2.1 Determining activity regions

As previously mentioned, CEST’s main goal is to identify events that occur across different geographical locations and thus it is necessary to identify the regions of a city that exhibit Twitter usage, as determined by Twitter users check-in. Given that (i) places where multiple users congregate often represent an event [48], and (ii) metadata of tweets includes spatial information that reflect the physical locations of users [17], we use this information to detect regions of activity where events can potentially occur (see in Figure 4.2). We group tweets in TG based on the physical proximity of their geocoordinates using DBSCAN (as discussed in Section 3.2). Thereafter, tweets in TG that are assigned to clusters are considered for further processing, whereas the remaining tweets are ignored.

4.2.2 Extracting candidate events

Tweets clustered using DBSCAN only reflect the cohesion of tweets in terms of proximity, however, not all the clusters created represent events. Furthermore, not
all the tweets from a single region represent a single event, i.e., multiple events can occur at a single location at different times. Based on the fact that events last for a finite period of time and that users tend to tweet at a higher rate within the event time bounds (see Figure 4.3), it is natural to perform a time analysis on tweet activity observed on clusters generated using DBSCAN (in Section 4.2.1) to identify events. By examining tweets frequency variation over time in each cluster we identify subsets of tweets, if any, that correspond to distinct events. Each cluster data is monitored at regular time intervals to determine if (i) users are active at that region and (ii) a minimum of activity is registered in a cluster. To do that, we separate tweets in a cluster into equal time slots based on their timestamp, and depend upon two different criteria: *time chunk* and *MinPts*. Each *time chunk* represents the shortest duration of time which can be observed for any event and *MinPts* represents the minimum number of tweets that need to be present in *time chunk*. We treat $time\ chunk = 15$.

Figure 4.2: Activity regions detected in NYC on December 2, 2015, using DBSCAN
and MinPts = 5 as the optimal parameter values11 based on our analysis on multiple samples of Twitter data.

![Graph showing frequency of tweets over time](image)

Figure 4.3: Frequency of tweets observed at a sample event: baseball game held between Toronto Blue Jays and Boston Red Sox on Jun 30, 2015

Tweets of each cluster from Section 4.2.1 are separated into multiple time slots and each *time chunk* is examined to verify if it contains a number of tweets greater than or equal to MinPts. If so, tweets of the cluster in the corresponding time slot are said to capture a *candidate event*. Furthermore, contiguous time slots of a cluster that satisfy both parameters are merged to capture information pertaining to a single *candidate event*. Only the subset of tweets in clusters that represent *candidate events* are considered for further processing.

4.2.3 Filtering candidate events

Candidate events are generated by analyzing the variation in the frequency of tweets over time. Unfortunately, Twitter users tend to adopt different approaches for posting content at regular intervals time, i.e., manually or through automatic systems. This

11These parameter values can be updated, depending upon the volume of Twitter data analyzed for event detection.
generates vast numbers of tweets from certain locations or users that can lead our
time-based strategy to mistakenly treat a set of tweets as a candidate event, even if
they do not discuss event-related information. To further filter out candidate events
that do not represent an event, we define a set of criteria, which we discuss in details
below. We also set a threshold for each criteria, based on empirical studies conducted
on various samples of Twitter data, to determine if a candidate event is in fact a real
event.

Many organizations and institutions employ robotic systems to post content or
promotional offers on Twitter. These systems, which are physically stationed at
a single location, post content online at regular intervals of time. Consequently,
tweets posted by these systems are grouped together by DBSCAN and mistakenly
treated as a candidate event. We examine tweets pertaining to each candidate event to
determine if more than 30% of tweets that are generated from a single geocoordinate.
If so, these tweets are definitely not originated from a human, which means that the
 corresponding candidate event is not an event and is excluded from further analysis.

A person may turn to Twitter to continuously share information about his personal
life and post multiple tweets from geocoordinates in close proximity, such as within
his house or work location, which causes DBSCAN and posterior time analysis to
mistakenly treat these tweets as a candidate event. Another issue related to the
number of users posting tweets from close proximity is, when very few users post
tweets at a higher rate while others just check-in from a location, these tweets may still
correspond to events. To avoid the aforementioned situations, we eliminate candidate
 events that contain more than 50% of the tweets posted by a single user.

As previously stated, multiple users participate at events, and thus a single user
sharing information on Twitter is a clear indicator that the tweets do not pertain to
events. Hence, we consider another criteria that verifies if a candidate event include tweets generated by a minimum number of distinct users, to consider it as an event. In order to satisfy this scenario, we only retain candidate events that include tweets posted by at least 5 different users.

Twitter users employ different vocabulary in tweets which can assist them to express their thoughts. Content of tweets play an important role in terms of detecting which tweets refer to events. For example, we noticed that at some locations, especially shopping malls, multiple people tend to retweet about the same information, e.g., a promotional offer, which do not really correspond to an event. To determine if tweets solely reproduce the same content, we employ a criteria based on content similarity, which analyzes the variations in the usage of words among tweets that refer to each candidate event. We estimate the degree of similarity between each pair of tweets within a candidate event by comparing words (excluding stop words12) from each tweet using the Jaccard distance. As defined in [49], the Jaccard index, also known as the Jaccard similarity coefficient, is a statistic used for comparing the similarity and diversity of sample sets. The Jaccard coefficient measures similarity between sample sets, and is defined as the size of the intersection divided by the size of the union of the sample sets. The Jaccard distance, which measures dissimilarity between sample sets (i.e., set of words in a tweet in our case), is complementary to the Jaccard coefficient. A similarity score of 1 indicates exact match, i.e., tweets are reproducing the same content, whereas a low score indicate tweets are dissimilar. As neither extreme case refers to an event, we eliminate candidate events which do not have a content similarity score within the $[0.5, 0.8]$ range to ensure that varied, yet

12Stop words (e.g., from, the and is), do not provide any relevant information regarding the discussed event, hence, we remove these from the tweets that refer to the event.
related, content is used in discussing an event.

Applying the mentioned criteria on the original set of candidate events detected from Section 4.2.2 yields the final set of candidate events that correspond to events.

4.2.4 Identifying more tweets related to events

Our event detection method so far uses only tweets with geolocation information in Twitter data to identify events. Unfortunately, only 2% of tweets obtained from Twitter contain location information [48], which means that a vast majority of tweets may still discuss events, even if they do not contain geolocation information (see an example in Figure 4.4). To take advantage of these tweets, we assign tweets in TNG to the events detected in Section 4.2.3 based on their timestamp and textual content. Given a tweet \(t \) in TNG, its timestamp is used to determine if it lies within the time bounds of an event, whereas words in \(t \) are examined to verify if there is or not a strong correlation between \(t \) and that event.

We first filter the tweets in TNG that do not belong to events by eliminating the ones that do not lie within the time bounds of the detected events from Section 4.2.3. Thereafter, we measure the similarity of words in \(t \) with respect to the most discussed words at the events (obtained from Section 4.2.3), to identify the event that is most likely discussed in \(t \) using Jaccard distance. We tokenize each tweet of that event, extract words, and analyze the frequency distribution of these words (excluding stop words). This allows us to identify the top \(k \)\(^{13} \) frequent words as the representative words of the event. \(t \) is said to discuss an event if it exhibits the higher similarity score with top \(k \) words of that event compared to other events, and timestamp of \(t \) lies within time-bounds of that event.

\(^{13}\)We set the value \(k \) to 10, based on the observations across multiple samples.
4.3 Validation of proposed event detection strategy

To verify the accuracy of our event detection method, we identified 65 sports events that took place in different cities during June 16-23, 2015 from the web sources listed in Table 4.1. Thereafter, we collected tweets related to these events using Twitter Streaming API (by setting up the location parameters to geocoordinates of the venues where events took place) and created a dataset called Real-time Events (for detailed information about the dataset, see Table 4.2). We consider this dataset as our event gold standard.

Based on the parameters for cluster generation and time analysis defined in Section 3.3 and Section 4.2.2, respectively, we applied our event detection methodology to the aforementioned dataset.

To quantify the accuracy of our event detection method, we use the well-known
precision metric, which is defined as the proportion of events detected with respect to the number of events in \textit{Real-time Events}. Based on the results of our experiments, our event detection methodology yields 0.86 precision, which reflects that 56 out of 65 events are detected by our proposed strategy. With regards to the unidentified events in \textit{Real-time Events}, we noticed a couple of scenarios in which the criteria defined for filtering \textit{candidate events} was not met. For some of the events that we failed to identify, we noticed that less than 5 users tweeted at the events at a higher rate to promote the events, which caused the content similarity criteria to not be satisfied. We also observed in other events that users were not active, i.e., users were
<table>
<thead>
<tr>
<th># of Events</th>
<th># of Tweets</th>
<th># of Geotagged Tweets</th>
<th># of Non-geotagged Tweets</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>321,538</td>
<td>49,739</td>
<td>271,799</td>
</tr>
</tbody>
</table>

Table 4.2: Details of tweets in real-time events dataset

not tweeting at the rate of 5 tweets for 15 minutes, which is why time chunk and MinPts were not satisfied while detecting a candidate event and thus the event was discarded.

Using our event detection method we can detect and collect information about events from Twitter data without any prior knowledge about events. We only utilize tweets with geolocation information to detect events. However, there exist non-geotagged tweets that might discuss information related to events, which is why we identify non-geotagged tweets related to those events. These tweets, which discuss different aspects pertaining to events, can be summarized to provide a concise overview of events, which we discuss in Chapter 5.
CHAPTER 5

EVENT SUMMARIZATION

In this chapter we introduce different techniques used in the design and development of our Twitter-based event summarization method. We discuss the details of each technique as well as how they add value towards generating informative summaries of events based on tweets.

5.1 Motivation for summarizing events

In Chapter 4, we presented a technique for event detection that recognizes different types of events within a region and groups tweets based on the event they discuss. While these tweets can be useful to learn information about events, a substantial amount of time and human effort is required to read these tweets and understand the facts and details about each event [53]. A concise summary of these tweets can provide users a better alternative to get a quick overview of an event. In general, summarization is defined as the process of creating a brief statement of the main points of any description [19]. Important goals of a summary are:

1. reduce the work load for the interpreter (simpler),

2. maintain coherence and coverage, and

3. include important aspects of the story.
Similarly, in our project, the basic idea of summarization is to take a body of information (i.e., a set of tweets) and reduce its size and content to its important points. A significant amount of research related to summarizing structured documents, such as blogs and news articles [29, 34, 43] as well as relatively long documents [22] exists but only few works have focused on summarizing tweets, which are short and unstructured. The authors in [16, 27] generate summaries from Twitter data of long running events that share the same underlying structure, such as football games. While the technique presented in [16] summarizes an event by observing bursty tweets within an event timeline, the one introduced in [27] extracts the important moments of an event based on topic and keyword variations within an event lifetime. Even though these works have proven effective, they ignore certain characteristics of events: (i) events can vary in their structure and (ii) the actions associated with different types of events may alter from one type of event to another, e.g., a touch-down in a football game and a keynote speech at a conference. In addition, techniques developed solely for generating summaries for well-structured events of a specific type cannot be applied to generate summaries of other type of events, which is a limitation. Moreover, existing summarization techniques applied on Twitter [16, 27] have focused on creating summaries for known events (i.e., events for which its type, location and duration of the events are available), whereas, in our case, no prior knowledge about events is available. To address the drawbacks of existing event summarization techniques when applied to tweets, we developed a generic event summarization strategy that can be applicable to create a brief overview of any type of event based on Twitter data. To do that, we analyze temporal, spatial and user behavior corresponding to that event.
5.2 Approach for generating event summaries

Our event summarization method examines text and metadata associated with tweets within a collection that discuss an event, denoted ET, to create the corresponding event summary. Among tweets in ET, we pay special attention to the subset of tweets denoted EGT, which contains tweets with geolocation information. While geographical information in EGT is specifically analyzed to determine the location of an event, tweets from ET are examined using different tools and text processing techniques (described below) to extract various facts and details about the event. Thereafter, key information about the event is identified and combined to generate the corresponding event summary. The overall summary generation process is shown in Figure 5.1.

Figure 5.1: Different processing steps involved in generating event summaries from Twitter data
5.2.1 Entity extraction

Named-entity recognition (NER), also known as entity identification, entity chunking, or entity extraction, is a subtask of information extraction that seeks to locate and classify elements in texts into pre-defined categories [37], such as “location”, “person”, “organization” and “misc”. Events consist of a sequence of moments, each of which may refer to actors (e.g. a player in sports event or a politician in a presidential debate) or objects (e.g. a stadium or a venue where the event took place), which are real-world entities. It is not unexpected then that these entities are discussed by event attendees in their tweets. To identify entities in each tweet in ET, we use the Stanford NER [12], a well known tool for detecting entities. As a large number of entities related to an event can be discussed among tweets in ET, we include in the summary of the event only the most representative ones, i.e., top k based on their frequency distribution, to capture the entities that gained the most attention from people at that event.

5.2.2 Title, hashtags, and keywords

A title of an event provides a quick overview about the main purpose of that event. Tweets in ET do not explicitly provide a title for the event they discuss. However, we can infer that information by examining the content of tweets in ET. Given that Twitter users tend to use hashtags to refer to issues or topics pertaining to an event, we rely on the most frequently-used hashtags to capture the title of the event. Hashtags have a well known structure, i.e., they are preceded by symbol ‘#’.

14We set the value of k to 10. In fact we consider k value is maintained to 10 across the chapter. This value is adjusted mainly because to limit the number of words in generating a concise summary.

15Topics at an event can refer to an any object or action that are part of the event. For example, in a sports event like football, two teams participate at an event and Twitter users may refer the teams as #team1 and #team2. Each of these hashtags represent a different topic.
before a word. We detect hashtags from tweets in ET using the following regular expression: \[#([\^\#]+)[\s,;]*\]. Thereafter, we analyze their frequency distribution and the top 2 hashtags in ET are included as the event title in the corresponding summary. To showcase other discussed topics (besides the ones treated as the title of the event), we also include in the summary for the event, the top k representative, i.e., most frequent, hashtags.

Keywords in tweets may also provide descriptive opinions about different aspects of an event. To capture highly-mentioned keywords in tweets of an event, we tokenize each tweet’s content for each word and analyze the frequency distribution of words in ET (excluding hashtags and stopwords). Subsequently, to demonstrate the most discussed words at an event, we include top k representative keywords in the summary.

5.2.3 Location and time

Given that an event is often short lived and associated with a location, we also include in the summary for the event its duration and where it took place. We do so by examining tweets in ET and EGT for time duration and geographical coordinates, respectively. Each tweet in ET contains timestamp information that defines when a user posts content on Twitter, which is why we use the timestamp of the first and last tweet in ET to identify the duration of the event. Furthermore, we examine the geolocation attribute associated with each tweet in EGT, which denotes the location from where the tweets was posted. As mentioned in Section 3.2, event location can not be represented by a point location. Consequently, we identify the bounding box of an event location using the minimum and maximum latitude and longitude in EGT.
5.2.4 Participants

As multiple people share and express their opinions about an event on Twitter, it is also important to capture the number of people who tweeted during the event, since it can reflect the popularity of an event [15]. We rely on the UserId attribute of each tweet in ET, which is a unique identifier for each Twitter user, to capture the number of distinct users who actually tweeted from an event and include that information in the event summary.

5.2.5 User behavior within event

People’s interactions with Twitter and their opinions towards a given event can change across the timeline of the event. Their behavior can convey how they reacted to or liked different moments of an event [38]. We capture these reactions to highlight users’ participation and reactions within each moment of an event. To do that, we analyze the non-stagnant behavior of users by dividing the timeline of the event into 5 minute time-chunks. In other words, tweets in ET are separated into 5 minute time-chunks according to their timestamp and each of these chunks is denoted \(TC_i \). Based on this analysis, we include in the corresponding summary of the event two graphs that showcase frequency distribution of tweets and the polarity of users’ opinions across the timeline of an the event. In addition, we include in the summary a rating score that captures the appeal of users at the event.

Burstiness of tweets at any given time during an event indicate an important moment where higher participation of users is observed, compared to other moments in the timeline of the event [16]. To illustrate the variation on the frequency with which people tweet at an event, we analyze the number of tweets in each \(TC_i \) and
include a graph that demonstrates frequency distribution of tweets in the event summary.

The polarity of user opinions in an event indicate how people reacted (i.e., either in a positive or negative manner) to different moments at that event. To capture the varying polarity of users’ opinions across the event timeline we rely on sentiment analysis, which classifies text as positive or negative depending on the text content. There are two different well-defined directions for measuring the sentiment: lexical approaches and solutions using supervised machine learning. Lexical approaches rely on the creation of appropriate dictionaries and the words present in the dictionary are tagged with respect to their polarity, whereas supervised approaches learn the patterns provided in a training dataset. Since tweet vocabulary is vague and changes with time, which raise challenges for supervised learning, we rely on the lexical approach for identifying the sentiment or polarity of each tweet. Tweets often include short hand notations (e.g., gn for good night), negations (e.g., not good) and emoticons (e.g., :)), which play an important role in determining user sentiment. In order to handle these special vocabulary terms, we created a dictionary that includes sentiment words (i.e., positive and negative words) compiled by Bing Liu et. al. [26], which have been used in other works for performing sentiment analysis [39, 41], as well as short hand notations and emoticons, which we manually identified from Twitter data samples. Details on the sentiment dictionary are shown in Table 5.1. To showcase the positive and negative opinions within TC_i, we count the number of positive and negative words in tweets that correspond to TC_i. The distribution of positive and negative sentiment across different time-chunks of an event are illustrated as a graph.

\[\text{Automatically identifying sentiment expressed in text has a number of applications, including tracking sentiment towards products, such as movies and books, improving customer relation models, detecting happiness and well-being, and improving automatic dialogue systems [28].}\]
in the summary for the corresponding event.

<table>
<thead>
<tr>
<th>Sentiment</th>
<th># of Dictionary words</th>
<th># of Emoticons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>2,252</td>
<td>199</td>
</tr>
<tr>
<td>Negative</td>
<td>5,082</td>
<td>279</td>
</tr>
</tbody>
</table>

Table 5.1: Details on words and emoticons in the sentiment dictionary we created for analyzing users’ opinions in tweets

A single measure that demonstrates the overall appeal of an event to people will be beneficial to qualify an event. A numeric rating is the evaluation or assessment of any object, such as a book or movie, in terms of quality or quantity or both of that object [18]. Ratings have proven to be effective in various information retrieval systems [47], such as recommendation systems, for assessing the quality of a product of interest to a user. Even though people do not use numeric ratings to qualify events on Twitter, they convey their sentiment towards an issue or a moment of an event in their tweets. Consequently, we examine their opinions and quantify the varying sentiments expressed by users at an event using a single rating (which is computed using Equation 5.1). As previously stated, opinions of people are not static across an event. Hence, estimating a rating for an event using static tweets but disregarding their timestamps may not be effective. We have observed that if users’ opinions are positive at the start of an event but turn to be negative towards the end, it indicates that the event does not have a positive impact on people. On the other hand, when people have not expressed any positive opinion in the beginning of an event but they are observed to be extremely active and positive towards the end, it indicates that people enjoyed that event. With that in mind, we designed our rating strategy in such a way that it explicitly considers sentiment variation across the timeline of an event. In order to capture the degree to which sentiment expressed during TC_i, influences
the overall rating of the event, we associated each TC_i with a weight that reflects the order in which TC_i occurs in the timeline of the event. For example, time-chunks TC_1 and TC_{10} are associated with weights 1 and 10, respectively, which indicates that sentiment expressed on tweets posted during TC_{10} influence the overall rating of the event more than the sentiment expressed on tweets posted during TC_1.

\[
eventrating = 5 \times \left(\sum_{i=1}^{n} W_{TC_i} \times S_{TC_i} \right) / \sum_{i=1}^{n} W_{TC_i} \tag{5.1}\]

where n is the number of time-chunks in an event, 5 is the normalization factor to generate a rating on a 1-5 scale, W_{TC_i} denotes the weight capturing the importance of TC_i in determining the rating of the event and S_{TC_i} is a score that reflects the polarity of the sentiment expressed within tweets in TC_i, which is computed as in Equation 5.2.

\[
S_{TC_i} = \begin{cases}
1, & \text{if } \sum_{t \in TC_i} W_{p,t} - \sum_{t \in TC_i} W_{n,t} \geq 0 \\
0, & \text{otherwise}
\end{cases} \tag{5.2}
\]

where t is a tweet in TC_i and $W_{p,t}$ and $W_{n,t}$ denote the number of positive and negative sentiment words, respectively. The number of possible sentiment words used on tweets that belong to different time-chunks is not predefined (i.e., range for sentiment words is not known in advance). Consequently, we normalize the sentiment score estimated for TC_i by defining S_{TC_i} to be 1 if the number of positive words outnumbers the negative ones and 0 otherwise.
5.3 Rating Validation

Most of the techniques used in creating the summary of an event, such as sentiment analysis and entity detection, are well-established and evaluated [12, 39]. However, our rating generation strategy based on Twitter data is novel; which is why assessment to demonstrate its validity is needed. As no previous works have explored estimating ratings for events from Twitter data, no baseline exists to evaluate our rating-generation mechanism. For this reason, we applied our rating generation strategy on datasets in different product domains made available on Amazon.com [13] (details on datasets considered for evaluation purposes are shown in Table 5.2). Each dataset contains a list of products each of which is associated with attributes such as ‘review’, ‘price’, ‘productId’, ‘userId’, ‘time’ and ‘rating’ (i.e., on a scale of 5). Since reviews and tweets are similar in nature, i.e., they both capture users’ opinions, it is ideal to evaluate our strategy by examining product reviews. It is important to note that product reviews are not only collected within a 24-hour period of time, which is the timeline considered by our rating generation strategy. To emulate the temporal nature of tweets, we consider each review as it belongs to a different time-chunk to generate the rating for the corresponding product.

<table>
<thead>
<tr>
<th>Product domain</th>
<th># of Reviews</th>
<th># of Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baby</td>
<td>2,033,757</td>
<td>6,962</td>
</tr>
<tr>
<td>Watches</td>
<td>751,916</td>
<td>10,318</td>
</tr>
<tr>
<td>Beauty</td>
<td>2,772,616</td>
<td>29,004</td>
</tr>
</tbody>
</table>

Table 5.2: Reviews collected for products from different domains on the Amazon

To evaluate our strategy, we rely on Absolute Error [25], shown in Equation 5.3, which computes the difference between the actual and predicted ratings.
\[AbsoluteError = \sum_{i=1}^{n} |R_i - r_i|/n \] (5.3)

where \(n \) denotes the number of products in a domain dataset, \(i \) represents a product, and \(R_i \) and \(r_i \) indicate the original rating within the dataset and predicted rating by our strategy for a product \(i \), respectively.

As shown in Table 6.2, the Absolute Error computed for products using reviews demonstrate that the rating predicted using our strategy differs by less than 1 unit with respect to average users’ rating (i.e., rating provided by users to the products in the dataset). We have observed that the computed Absolute Errors are consistent across different domains, which further conveys that our strategy can predict a rating close to users’ provided ratings. Our rating generation uses the polarity of a tweet or review content to infer rating. However, we identified that some of the reviews for products do not include words that express sentiment. We have also noticed that reviews are longer than tweets, which causes the ratio of non-sentiment words in reviews to be higher compared to tweets. To further evaluate the correctness of our approach, we applied our rating strategy only on reviews that include sentiment words. In doing so, we saw a consistent decrease in Absolute Error, which further demonstrates that our rating strategy performs better when applied on reviews with the sentiment.

<table>
<thead>
<tr>
<th>Product domain</th>
<th>Absolute Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All reviews</td>
</tr>
<tr>
<td>Baby</td>
<td>0.939</td>
</tr>
<tr>
<td>Watches</td>
<td>0.897</td>
</tr>
<tr>
<td>Beauty</td>
<td>0.810</td>
</tr>
</tbody>
</table>

Table 5.3: Absolute Error computed using our proposed rating generation strategy on different domain of the Amazon dataset
Based in the results reported in the Section 5.3, we have verified the correctness of our rating generation strategy. The findings ensures that this strategy can evaluate the appeal of users towards an event using Twitter data.
In this chapter we present an example that showcases CEST’s ability to identify events from a Twitter sample and generate the corresponding summaries.

6.1 A case study of CEST on U.S. Open

In Chapter 3, we studied Twitter usage around PoIs and verified that individuals often use Twitter to express their thoughts when they are at venues where interesting incidents occur. Based on that knowledge, we designed and developed CEST so that it takes advantage of Twitter data to detect different types of events by analyzing streams of tweets from a particular location and generate a brief overview for each of the identified events.

To illustrate the functionality of each module in CEST, we apply CEST on a sample of tweets collected from New York city (NYC) during September 8th, 2015. This collection of 123,112 tweets, which we denote NYC tweets, was retrieved using Twitter’s public streaming API (further details on NYC tweets are presented in Table 6.1).

As discussed in Chapter 4, by applying CEST’s event detection strategy on NYC tweets, regions of activity within NYC are determined. However, recall that not all identified regions of activity correspond to events. Hence, CEST analyzes tweets in
each one of these regions with respect to time (discussed in Section 4.2.2) and obtains 83 candidate events which potentially correspond to real events. Thereafter, CEST further eliminates candidate events according to its filtering criteria, and treats 74 as real-life events¹⁷.

<table>
<thead>
<tr>
<th>Day</th>
<th>Tweets Without Geolocation</th>
<th>Tweets With Geolocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 8th</td>
<td>100,915</td>
<td>22,197</td>
</tr>
</tbody>
</table>

Table 6.1: Information pertaining to NYC tweets

Among the 74 detected events, we focused on the 2015 U.S. Open Tennis women’s quarter final. We used CEST to create the corresponding summary, which is shown Figure 6.1, using its event summarization technique (described in Chapter 5) on the 778 tweets in NYC tweets that describe the event.

<table>
<thead>
<tr>
<th>Real-time events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor Day Parade</td>
</tr>
<tr>
<td>Construction on #ELine BOTHDIR from Forest Hills-71st Avenue Station to Queens</td>
</tr>
<tr>
<td>Salman @ powerHouse book launch # Manhattan Bridge</td>
</tr>
<tr>
<td>West Indian American Day Carnival</td>
</tr>
<tr>
<td>Americana Music Festival & Conference With Pokey</td>
</tr>
<tr>
<td>Yankee Stadium baseball</td>
</tr>
<tr>
<td>Free Beer Tasting #actors #beer #laborday</td>
</tr>
<tr>
<td>John F. Kennedy International airport</td>
</tr>
</tbody>
</table>

Table 6.2: Different real-time events detected in NYC

By analyzing the 502 tweets discussing the US Open (in NYC tweets) that have a geolocation associated with them, CEST captures the location bounding box coordinates where the event took place. Thereafter, using all of the tweets that discuss the game, CEST infers facts and important information related to the female quarter

¹⁷Note that we have manually examined each set of resultant tweets to confirm it refers to a real-life event.
final of the 2015 US Open. CEST treats *usopen* and *usopen2015*, which are the top 2 most frequently used hashtags (out of 331 hashtags identified in event discussions) as the title of the event, which suitably depicts the main topic of the event. CEST also correctly recognizes the date and duration of the event. Based on the analysis conducted on *NYC tweets*, CEST identifies more than 300 unique individuals who turned to Twitter to share their thoughts during the event. These users employ different hashtags in their tweets to express their opinions. CEST detects *#tennis*, *#nyc*, *#venus*, and *#serenawilliams* as the most frequently-used hashtags, which capture facts about the event, i.e., the event is a tennis match that takes place in
NYC and both Serena and Venus are players in that match.

CEST recognizes the most frequently-discussed entities during the game as *Serena, Arthur Ashe, USTA*, and *Flushing NY*, which denote the player in the game, the venue of the event, the United States Tennis Association and a village in New York where the quarter final takes place, respectively. In a similar manner, CEST identifies *tennis, usopen* and *championships* as the recurrent keywords in the event discussions. Unsurprisingly, these keywords reflect the words in the title of the game *U.S. Open Tennis Championships*.

Along with the facts related to the event, CEST analyzes and depicts users’ behavior into two graphs, one that illustrates varying frequency of tweets and other that exhibits changing sentiments of individuals opinions, along the lifetime of the event. We observe from the graphs and the corresponding tweets that people are very excited about sisters Venus and Serena Williams playing together. We also notice that the positive sentiment within the game increases with the frequency of tweets, which illustrates that users are enjoying the game. In fact, the time where the peak in both graphs is observed, the hashtag *Serena* was the most highly discussed word and individuals’ sentiments are extremely positive compared to other moments, which reflects her victory in the match.

Finally CEST computes a single qualitative rating for the event which conveys the overall likeliness of event attendees towards the game. Rating is computed based on the dynamically changing sentiments of users across the lifetime of the game as 3.36. Even though both players, i.e., Serena and Venus, have given tough competition to each other and positive comments are observed across the game, there were certain moments of the game with negative comments (observed from sentiment graph in Figure 6.1). Hence, the rating predicted by CEST correlates with
the users' experience at the game.
CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusion

We have developed CEST, a city event summarization tool that analyzes tweets posted from a given city. This tool automatically identifies events from Twitter streams and summarizes information about each of these events to provide an overview of activities happening within a city over a period of time. The scope of the project included (i) the analysis of Twitter data and (ii) the development of techniques which allowed us to understand:

1. How Twitter usage is spread around PoIs of a city.

2. How different events occurring in a city can be detected from Twitter data.

3. How tweets expressing opinions about an event can be summarized.

We proposed and developed DGP (Distribution of Geotagged data around PoI), an algorithm that identified Twitter usage around different Points-of-Interest (PoIs) in a city. The analysis on Twitter data demonstrated that important activities that occur in a city or specific location, which gain people's attention, are being visible in the Twitter space. We also compared the usage of Twitter with Flickr, to verify how Twitter is used within the city. As a result we learned that even though Flickr is
more frequently used around PoIs, Twitter has shown a reasonable footprint around PoI.

Having established a manner to automatically identify tweets likely posted in the vicinity of the areas of activity, we proceeded to implement a novel event detection technique that made it possible to identify events regardless of the category they belong. We applied the developed strategy to hundreds of thousands of tweets and examined the detected events, which led us to observe that many organizations employ robotic systems to tweet promotional advertisements and sales offers of their products. Unfortunately, these tweets do not correspond to events, but enclose spatio-temporal characteristics which influence our detection technique, and cause these tweets to be classified as tweets that discuss events. With that in mind, we introduced text related features, along with spatio-temporal properties, which assisted in avoiding tweet misclassification, by which the efficiency of our event detection in terms of eliminating tweets that do not correspond to events is improved.

Lastly, we developed an event summarization technique that aggregates tweets and captures users opinions across the lifetime of an event, as well as details about the event, such as location, title and entities involved. We have learned that sentiment words used in a tweet are key to analyze users’ opinions and utilized this information to generate a rating score for each event. Given that an event is a collection of activities that occur over time, analysis of user behavior across the event’s life-time took a significant part in generating event summaries that adequately capture details of every event.

The major contributions made as a result of developing CEST include:

- The design and implementation of a category independent event detection technique that identifies small-scale events to large-scale events of a city based on
Twitter data.

• The development of a new strategy to generate ratings and summaries for events from Twitter data, which depends upon techniques of sentiment analysis, entity detection, and temporal features.

• The introduction of a novel method that analyzes data from SNS and estimates its usage around PoIs of a city.

• The development of a tool that provides a unique way to keep track of all the activities that occur in a city, by simply analyzing the tweets coming from that region.

7.2 Applications

As previously stated, CEST is comprised of three major modules each of which can be used independently to address challenges pertaining to analyzing Twitter usage around PoIs, event detection and event summarization:

Twitter usage around PoI: Our method that analyzes SNS usage with DGP aims to determine the areas or places of higher activity within a city. Population distribution around different geographical locations within a city varies according to the time of the day and seasons of the year. Understanding these characteristics of places in a city which attract people could help city development organizations, for improving and arranging facilities accordingly.

Event Detection: Learning about the events happening around and within a city is highly important from various perspectives. For instance, from a business point of view, learning about the types of activities happening in a city can aid in
making plans on business expansion or marketing. From a security perspective, event
detection can be used to alert city authorities about unusual activities and gatherings
occurring in a city. In addition, it is hard to find or keep track of information about
every event happening within a city using any news channel or articles. However,
social media can act as a platform for discussions about all those events. Thus, our
event detection technique can discover all the events happening around the city based
only on Twitter data analysis.

Event Summarization: Event organizers conduct surveys to collect opinion or
feedback from event attendees about the event. The provided feedback helps event
organizers to analyze and improve their facilities. However, only 5% of the people
participate in these surveys [36], which is a drawback. Given that people share
their opinions about events on Twitter, our summarization technique can serve to
gather information related to events without imposing any extra burden on the users.
Moreover, summaries generated by analyzing opinions from visitor tweets can provide
valuable feedback to the event organizers.

CEST can be applicable and useful in the following areas:

- **City development:** Generating a summary of all the events that happened
within a city that captures user experiences around these events can help city
development authorities to identify the places of high activity to provide good
facilities.

- **Travel guide:** Archiving a list of events happened across a city can be used as
a guide to understand the various kinds of events that take place within a city.
This can be immensely beneficial for any individual, especially to a new visitor
of the city.
• Event recommendation systems: Learning about events a user attended including specific details about those events provide valuable information to keep track of user interests. This information is helpful for event recommendation systems that generate suggestions on future events for users that are similar to those the user attended in the past.

7.3 Future work

Even though CEST introduces unique approaches for utilizing freely and instantaneously available Twitter data to identify usage of Twitter, detect events and create summaries of events happening across a city, these approaches have their own limitations. Consequently, we have identified the following potential future improvements for CEST:

• We have focused on analyzing Twitter usage around PoIs of a city, but analyzing the changes in the patterns of Twitter usage around PoI based on time and season would be helpful from business perspective.

• For event detection, we have considered geographical, temporal and textual features. However, we have not explored mechanism to identify the category of an event, so introducing features that separate different type of events within the collection of events from a city, could be beneficial.

• We have evaluated our methods of finding Twitter usage around PoIs, event detection and event summarization on sample tweets collected using Twitter Streaming API. However, it is a known fact that this API does not provide
the full volume of data generated on Twitter. Hence, we would like to conduct further explicit studies and assessments using more comprehensive Twitter data.

- From the experiments conducted as a part of identifying Twitter usage around PoIs and the coverage observed in cities, we noticed that Twitter usage in cities varies with respect to the population of a city. Unfortunately, establishing how or why the population size of a city influences Twitter usage is beyond the scope of this project. For this reason, in the future, we would like to identify what other factors such as population of a city, geographical positioning of a city, and size of a city, influence the usage of Twitter in a city.
REFERENCES

