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EFFECT OF GRAIN BOUNDARY ENGINEERING ON
MICROSTRUCTURAL STABILITY DURING ANNEALING
Scott M. Schlegel, Sharla Hopkins, and Megan Frary

Department of Materials Science and Engineering, Boise State University

ABSTRACT

Grain boundary engineering, which increases the special boundary fraction, may improve microstructural stability
during annealing. Different processing routes are undertaken to establish the effectiveness of each and to better
understand which microstructural features determine the resulting stability. We find that multiple cycles of grain
boundary engineering result in a material that resists abnormal grain growth better than other processing routes
despite similarities in special boundary fraction, grain size, and general boundary connectivity among as-processed
materials.
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INTRODUCTION

Many materials properties depend on grain boundary character [1-7]. For example, some coincidence site lattice
(CSL) boundaries, characterized by a ¥ value which gives the reciprocal density of coincident sites, have been

|"

shown to be resistant to intergranular cracking [1-3] and corrosion [4-6]. As a result of their “special” properties, a
high fraction of low-Z CSL boundaries is desirable in a microstructure. Watanabe introduced the concept of grain
boundary engineering (GBE) in which a high fraction of special boundaries (X < 29) is imparted to a material [8].
While boundaries with 2 < 29 are usually classified as special, not all of these demonstrate so-called “special
behavior,” which is most often found in 23" boundaries. Through GBE processing, the fraction of special
boundaries, p, typically between 0.3 to 0.6 in conventionally processed materials, can be increased to p ~ 0.8 [1-7].
The improved properties resulting from the increase in the special fraction are likely due in part to the

corresponding decrease in the connectivity of general grain boundaries [9, 10].

Grain boundary engineering can also affect microstructural stability during annealing. Schwartz et al. investigated
the influence of processing method and annealing temperature on the grain boundary character distribution
(GBCD) in high-purity copper [11]. The grain size and GBCD of the specimen processed by GBE were stable during
annealing, while a conventionally processed specimen experienced abnormal grain growth (AGG) and a slight
decrease in p [11]. Grain boundary character has also shown to influence microstructural stability in Ni-based
alloys [7, 12]. Tan et al. found the GBCD remained much more stable in GBE’d materials as compared to as-
received materials after annealing for 6 weeks [12].

A number of other studies have investigated how the GBCD evolves during grain growth, regardless of the initial
distribution of boundary types [13, 14]. In general, high-energy boundaries are expected to exhibit higher
mobilities than low-energy boundaries (e.g., some low-X CSL boundaries). Lee and Richards found grain growth in
nickel to increase the special boundary fraction which they attributed to the relative boundary mobilities [13].
Lower-energy, lower-mobility boundaries should increase in length as higher-mobility boundaries would likely be
consumed during grain growth. However, another study of nickel with an initially high special fraction resulted in
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decreased p after grain growth [14], perhaps an effect of minimized solute-boundary interactions, which inhibit
mobility via Zener pinning, in low-energy boundaries. Therefore, annealing may increase p in high purity metals,
while p is expected to decrease with grain growth in samples with impurities.

The objectives of the present investigation are to further study the microstructural stability of grain boundary
engineered versus conventionally processed copper, to investigate conditions that lead to the onset of abnormal
grain growth in these materials, and to determine the role that general boundary connectivity plays in
microstructural stability.

EXPERIMENTAL PROCEDURE

The material used in annealing experiments was 99.9% Cu bars. Two processing routes were applied: (1) cyclic
GBE or (2) one-step “conventional processing” (CP). One cycle of GBE consists of cold rolling to 80% of the original
thickness followed by annealing in air for 10 min at 560°C then water quenching; GBE parameters were adapted
from [11]. The GBE process was repeated four times, and after each cycle, 20% of the specimen length was
removed for microstructural characterization; these specimens are referred to as O0GBE, 1GBE, 2GBE, 3GBE, and
4GBE. The CP route used a single strain step to reduce the thickness by the same amount accumulated during four
GBE cycles (59%), followed by the same annealing step as in GBE processing.

Processed Cu specimens were annealed in air at 700°C for 2, 12, 36, and 108 h, at 800°C for 6 and 18 h, and at
900°C for 8 h. After annealing, standard metallographic sample preparation was used followed by electropolishing
for 20 min at 1.8 V in a solution of 70% phosphoric acid at room temperature. Grain orientation and grain
boundary character were determined using an EDAX/TSL electron backscatter diffraction (EBSD) system on a LEO
1430 SEM. Orientation data were collected on a hexagonal grid with a step size of 2 um over a 1 mm” area and
analyzed with OIM™ Analysis software. The scan data were cleaned using the neighbor-orientation correlation
algorithm. Miicrostructural evolution was quantified by determining mean linear intercept grain size, special
boundary length fraction and crystallographic texture. Customized data analysis routines in IDL (RSI, Inc., Boulder,
CO) were used to determine the general boundary connectivity via the cluster mass distribution [10]. A connected
path of general boundaries, which can span many grains, is defined as a boundary cluster; the extent of the cluster

is described by its mass, the total length of boundaries in the cluster normalized by the mean linear intercept, L.

Here, areas 35 x 35 L2 were analyzed for each sample resulting in an analysis of approximately 1225 grains. By
analyzing areas with more than 1000 grains, errors are limited to only the largest cluster sizes which can be viewed
as a lower bound on the true size of general boundary clusters. A thorough discussion of the error inherent in this
analysis is provided in [10].

RESULTS AND DISCUSSION

The goal of GBE processing was to increase the special boundary fraction (2 < 29) in copper. After four cycles of
GBE, p increased from 0.35 to 0.64; Figure 1 shows the GBCD for each processing condition where the majority of
special boundaries are seen to be 23 boundaries. Among CSL boundaries, the populations of 29 and 227 are also
significant; of the other CSL boundaries with ¥ < 29 (~0.06), none had a population greater than 0.015. The
fraction of low-angle boundaries was initially high in the as-received material (0GBE) and decreased to a relatively
constant value of about 2% after processing. In addition to changing the special fraction, GBE resulted in a small
change in grain size; the OGBE specimen had a grain size of 4.8 um while the 4GBE specimen had a grain size of


elizabethwalker
Text Box
NOTICE: This is the author's version of a work accepted for publication by Elsevier. Changes resulting from the publishing process, including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. The definitive version has been published in Scripta Materialia, 61(1), July 1, 2009. DOI: 10.1016/j.scriptamat.2009.03.013



NOTICE: This is the author's version of a work accepted for publication by Elsevier. Changes resulting from the publishing process,
including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this
document. Changes may have been made to this work since it was submitted for publication. The definitive version has been
published in Scripta Materialia, 61(1), July 1, 2009. DOI: 10.1016/j.scriptamat.2009.03.013

18.8 um. The CP specimen also exhibited an increase in special fraction and grain size to 0.61 and 13.9 um,
respectively. Table 1 summarizes the results of the different processing methods. An analysis of the error
associated with EBSD data was performed for five randomly selected areas, each 1 mm?, from a single specimen.
For uniform microstructures, the error in special boundary fraction is £0.02 and in grain size is £0.8 um. It is
important to note that the 2GBE, 4GBE and CP specimens had very similar grain sizes after processing and nearly
identical special fractions. Although the grain size and special fraction are close, microstructural differences can be
observed by examining crystallographic texture. Figure 2 shows orientation maps after processing where the
colors correspond to unique crystallographic orientations. The 2GBE and 4GBE specimens have a nearly random
texture while the CP specimen shows a strong (001)<100> rolling texture.

Finally, the general boundary cluster size distribution (Figure 3) was determined for each specimen after
processing from equivalently-sized areas where the cluster size is normalized to the mean linear intercept [10].
The cluster size distribution for the 0GBE material differs considerably from those of the 2GBE, 4GBE and CP
specimens; specifically, much larger general boundary clusters are observed before thermomechanical processing.
Although differences are observed between the 2GBE, 4GBE and CP specimens, each of these has its maximum

cluster size near 100 L . The differences in the general boundary connectivity in CP vs. GBE materials are not as
drastic as in, e.g., [10].

The results of the GBE processing can be compared to those in [11], from which the GBE parameters were
adapted. Most notably, the CP route in that work increased p from 0.15 to 0.57, while four cycles of GBE yielded p
=0.78 [11]. In the present work, the difference in p was less significant and, as will be shown later, cannot be used
to explain differences in the properties of the CP and GBE materials. The difference between the effectiveness of
GBE here and in [11] likely results from differences in starting materials (e.g., initial grain size and special fraction).
In addition, their study used high-purity oxygen-free electrolytic Cu (99.99% pure), while in our study the Cu was
99.9% pure [11]. The purity may have influenced effectiveness of GBE [5], as impurity atoms can minimize the
relative energy difference between general and special boundaries due to solute segregation along the boundaries
[15]. It is also difficult to compare to the as-processed microstructures in [11] because the crystallographic
textures were not reported. Finally, although the authors suggest that the general boundary connectivity varies
between GBE and CP materials, no quantitative data were included.

After processing Cu through different routes, the evolution of the GBCD, grain size, and texture was evaluated as a
function of annealing time at 700, 800, and 900°C. Table 1 summarizes the grain size and special fraction for each
annealed specimen. For specimens without AGG, the standard deviation in the grain size distribution was near the
average grain size; AGG specimens typically had standard deviations at least twice the average grain size, indicative

of a bimodal distribution. In addition, when AGG was absent, the largest grain was typically <10L while this

increased to >10 L during AGG. After aging at 700°C, the 4GBE specimens exhibited the greatest microstructural
stability in terms of the grain size. The CP specimen, whose grain size and p were initially similar to 4GBE,
experienced unpredictable grain growth (e.g., the specimen aged 12 h showed AGG). The microstructural
evolution was also characterized by p, which increased only slightly in the thermomechanically-processed
specimens aged at 700°C (Table 1). The slight increase in p during grain growth is in line with both Ref. [14] and
the simulation work of Ono [16], where an increased special fraction during grain growth was found. However, the
increase may be insignificant enough that the results can be compared to those of Ref. [17] where no change in
GBCD is observed during grain growth.
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During annealing at 800°C, both the 2GBE and CP specimens experienced AGG; at 900°C, all specimens except the
4GBE underwent AGG. In the most extreme case (8 hours at 900°C, ~0.86 Ty), considerable grain growth was
observed in the 4GBE specimen, but the grain size distribution remained relatively stable. The stability of the 4GBE
specimen and AGG in the CP specimen are in agreement with Schwartz et al. who investigated the effects of aging
on GBE copper for up to 16 h at 500 and 700°C [11]. In their study, the 4GBE specimen experienced minimal grain
growth, while the specimen analogous to CP experienced abnormal grain growth [11]. The special fraction differed
significantly between their GBE and CP specimens and the authors suggested that differences in general boundary
connectivity may lead to the observed AGG. However, in the present work, the special boundary fraction in the
2GBE, 4GBE and CP materials is very similar. In addition, within the resolution of the technique, the general
boundary connectivity also varies minimally. Therefore, neither of these microstructural descriptors can be
reasonably identified as leading to AGG as suggested in [11].

One possible explanation for the microstructural stability of the 4GBE specimen as compared to the CP may be the
difference in crystallographic texture of the two specimens which has been shown to affect microstructural
evolution [18-20]. This suggests that the AGG observed in our study may be caused by the strong initial texture in
the CP specimen. Therefore, further investigation of the AGG specimens was conducted to determine whether the
abnormal grains exhibited a preferred crystallographic orientation which could have arisen from the initial texture
in the CP material. Figure 4 shows orientation maps of the entire cross-sectional areas of three CP specimens that
showed significant AGG and one 4GBE specimen that resisted AGG. The CP specimen annealed 12 h at 700°C
showed a moderate amount of abnormal grain growth with areas of stable grain growth. The abnormal grains
were oriented with either the <100> or <111> direction parallel to the surface normal. Abnormal grain growth was
dominant in the CP specimens that were aged for 6 h at 800°C and 8 h for 900°C; the grains that grew abnormally
showed no preferred orientation which suggests that AGG is not driven purely by a texture mechanism. As Figure
4 illustrates, the 4GBE specimen that was aged for 8 h at 900°C showed normal grain growth while maintaining a
relatively stable distribution of grain sizes and a random texture.

Furthermore, inspection of the initial microstructures reveals that texture may not be the only cause of AGG.
When comparing only the 4GBE and CP specimens, this explanation holds; however, the fact that the 0GBE and
2GBE specimens experienced abnormal grain growth negates initial texture as the only driving force since both
specimens exhibited an initially random texture. The 2GBE specimen experienced abnormal grain growth when
aged for 18 hours at 800°C and for 8 hours at 900°C while the 4GBE did not. By most microstructural measures
(texture, grain size, and special boundary fraction), the two specimens (2GBE and 4GBE) were very similar. In
general, AGG results from the extremely high mobility of a subset of grain boundaries which may arise due to a
particular crystallographic texture. However, since AGG occurs even in specimens without sharp crystallographic
textures, the bulk texture cannot solely drive the onset of AGG. It is possible that the randomly texture samples
that underwent AGG had local textures conditions that led to locally high boundary mobility.

CONCLUSIONS

A study of microstructural stability in commercially-pure copper was presented with the goal of better
understanding how microstructure evolves over time at elevated temperatures. The work presented here builds
upon the growing body of work concerning GBE and microstructural evolution. The following are the main
conclusions:
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GBE processing of commercially-pure copper increased the special boundary fraction from 0.35 to 0.64 while
maintaining a random texture. A conventional processing route was also used which resulted in 61% special

boundaries and a strong (100)<001> cube texture.

During annealing, the 4GBE specimen exhibited the greatest microstructural stability, which was attributed to

the high special fraction and random texture of the specimen.

The 2GBE, 4GBE, and CP specimens had similar special boundary fractions and general boundary connectivity;
however, the 2GBE and CP specimens undergo AGG which indicates that a more subtle microstructural

characteristic, or combination thereof, leads to AGG.
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Table 1: Grain size and special boundary fraction after annealing.

Specimens marked AGG underwent abnormal grain growth.

Temp Time

o 0GBE 2GBE 4GBE CP
SO

Grain size (um)
RT 0 4.8 14.0 18.8 13.9
2 15.0 17.5 179  AGG
12 14.3 17.3 16.1 AGG

700 36 13.1  AGG 173 14.5
108 15.1 16.8 19.8 15.8
6 14.9 14.7 20.1  AGG
800

18 155 AGG 20.1 AGG

900 8 AGG AGG 441 AGG
Special boundary length fraction

RT 0 0.35 0.62 0.64 0.61

2 0.54 0.60 0.68 AGG

12 0.57 0.66 0.70  AGG

700 36 0.65 AGG 0.69 0.65
108 0.64 0.64 0.70 0.65
6 0.66 0.71 0.71 A

200 7 7 GG

18 068 AGG 070 AGG
900 8 AGG AGG 074 AGG

0GBE " 527 Other CSL
IGBE
2GBE
3GBE
AGBE

CP

00 01 02 03 04 05 06 07
Fraction of boundaries

Figure 1: Grain boundary character distribution of as-processed specimens prior to annealing.
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Figure 2: Orientation map for (a) 2GBE, (b) 4GBE, and (c) CP specimens after processing; grain colors correspond to
unique crystallographic orientations as given in the inset legend. Black lines correspond to general grain
boundaries, red lines to 23 boundaries, and blue lines to other CSL (2 < 29) boundaries.
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Figure 3: Cluster size distribution from an area 1225 L ? for as-processed specimens. Cluster mass is given in

multiples of the mean linear intercept grain size.

11

{08 S
CP

I12hat ©6hat 8 hat 8 h at

700C  800C 900C 900 C

Figure 4: Orientation maps for CP and GBE specimens after annealing which illustrate the extent of abnormal grain

growth in the CP specimens and its absence in the 4GBE specimen.
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