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LONI Pipeline NiPype CamBAFx Fiswidgets JIST Slicer BIS

Medical Image
Analysis API

No Nipy CamBA No MIPAV ITK/VTK VTK/ITK

Self contained in-
stallation

Yes No Yes No No Yes Yes

Extensions Binaries N/A N/A Binaries Plugins & Binaries Plugins Modules

Primary Lan-
guage

Java Python N/A N/A Java C++ C++, Tcl

Distributed
Computing

Yes Yes No No Yes Yes No

GPU Computing Yes No No No No N/A Yes

Licensing Research only BSD GPL v2 GPL LGPL BSD GPL v2

Multi-platform Yes Yes No Yes Yes Yes Yes

Testing Yes N/A N/A N/A N/A Yes Yes

GUI Framework Vis Prog Desktop Desktop Desktop Vis Prog Desktop Desktop

Active Devpt. Yes Yes yes No Yes Yes Yes

Table 1 Comparison of workflow environments for medical image analysis. JIST - Java Image Science Toolkit [12], BIS - BioImage
Suite.

1.2 A Brief Overview of BioImage Suite

BioImage Suite (www.bioimagesuite.org) is an open source

(GPL v2) multi-platform image analysis software that

has found successful usage among users with a wide

range of backgrounds and expertise. The key functional-
ities of BioImage Suite (Figure 3) includes Anatomical

image analysis (segmentation and registration tools),

functional MRI analysis tools (single/multi subject anal-

ysis), Diffusion Weighted Image analysis (tensor anal-

ysis, fiber tracking), Neurosurgery tools (intracranial
electrode localization, vvlink tools, differential SPECT

tool), cardiovascular image analysis (4D surface editor,

estimation of LV deformation, angiography tools).

BioImage Suite has been used in a number of peer-

reviewed publications in high-impact scientific journals.

These papers span both neuroimaging applications and
applications in the rest of the body including diabetes,

molecular imaging development, and tissue engineer-

ing. We would like to highlight two applications in par-

ticular to illustrate some of the unique aspects of our
software.

Meltzer et al. [14] used intracranial electro- encephalog-
raphy to study working memory load on oscillatory

power. These studies were performed on patients that

had intracranial electrodes implanted as part of the

workup for epilepsy neurosurgery. BioImage Suite was
used for (i) intracranial electrode localization from CT

brain images, (ii) mapping these CT images to anatom-

ical MRI images of the same person and (iii) mapping

these MRI images to a single brain template to enable

the analysis of data from multiple patients in a common
coordinate system.

Petersen et al. [17] and Taksali et al. [25] used (among

other datasets) T1-weighted abdominal MRI images to

quantify fat in the abdomen. BioImage Suite was used

Fig. 3 Key functionalities of BioImage Suite. . This table lists
all the functionalities in BioImage Suite that includes Anatom-
ical Image analysis tools, Functional MRI Analysis tools, Dif-
fusion Weighted Image analysis tools, Neurosurgery Tools and
Cardiovascular image analysis tools. Specifics regarding the tools
and their use can be found in our manual on our website at
www.bioimagesuite.org

for slice inhomogeneity correction, bias field correction,
outline of the peritoneum (the bounding surfaces of the

abdomen) and for interactive segmentation of fat layers

using the object map editing tool.
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Fig. 4 BioImage Suite Architecture. Main Application Structure
(A), Module Structure (B) and Algorithm level data processing
(C++ Implementation) (C). All parts of A+B are written in Incr
Tcl and invoke C++ code wrapped with a TCL access layer as
pioneered by VTK.

Fig. 5 This diagram provides an overview of the new unified
framework for image analysis algorithm development. Any image
analysis algorithm has a combination of images, surfaces, and
transformations (from registrations) that serve as input to the
algorithm. The algorithm has some input parameters (the values
for which can be specified on the command line or using GUI
components). In our framework, the input parameters can be
one of boolean, real, integer, string, listofvalues (for drop down
options when using a GUI) or a filename. The output can be a
combination of images, surfaces and transformations.

2 System Design

Overview: We present the design of our new frame-
work that allows for easy development, deployment, and

overall packaging of image analysis algorithms. Using

this framework user interfaces and testing capabilities

are created for the developer. Novel algorithms can be

added (in C++) and custom workflow pipelines can be
constructed (in Tcl) where each piece of the pipeline is

an algorithm that takes an input and performs an oper-

ation. Figure 5 shows a flowchart for an image analysis

algorithm. Each new algorithm takes a combination of
images, surfaces, transformations, and input parame-

ters and produces a combination of images, surfaces,

and transformations as outputs.

An overview of the framework design is provided in

Figure 4. At the algorithm level of the architecture (Fig-
ure 4C), novel algorithms are written in C++ and pack-

aged as classes deriving from appropriate VTK-derived

parent classes [22]. CUDA [26] and ITK [9] function-

ality is hidden within these VTK-style C++ classes,

which are wrapped and exported as Tcl functions. If

a user does not have a modern CUDA capable graph-

ics card, we seamlessly fall back to CPU versions of

the same code at runtime instead of the CUDA accel-
erated code. Each algorithm is wrapped as an Incr-Tcl

module using our new object-oriented framework (Fig-

ure 4B). Incr Tcl [10,24] is an object-oriented exten-

sion to Tcl. These modules can function as standalone
command-line applications, plugins/modules for other

software and as GUI applets. Modules can also be in-

corporated into more complex applications for specific

tasks (for e.g. surgical planning data tree). The applica-

tion structure (Figure 4A) consists of a combination of
viewers, an appropriate data model and a set of mod-

ule containers which manage the communication of the

application with the modules. This framework enables

us to create custom applications for different types of
processing (e.g. our cardiac segmentation editor, or our

fMRI Tool – Figure 1) that share large aspects of their

underlying codebase. Different data models are used in

different applications to enable flexibility. For example,

single-algorithm applications such as image analysis al-
gorithms (registration, segmentation etc), bias field cor-

rection contain a fixed model with enumerated vari-

ables. Complex applications such as the surgical plan-

ning data tree contain a collection of pre-operatively
acquired images of varied modalities (CT, MR, DTI,

fMRI, electrode mappings) as well as linear/non-linear

transformations of each acquisition to the same space.

In some cases, surfaces are required and can be added

to the surgical planning data tree.

2.1 Framework design details:

Modules are implemented as derived classes of

bis algorithm (or a more specialized subclass such
as bis imagetoimagealgorithm.) There are two key

methods that must be implemented: Initialize and

Execute. In Initialize, the module interface is for-

mally specified in terms of three sets: (i) inputs, which
are objects such as images, surfaces, landmarks, etc.,

(ii) parameters, which are single values such as inte-

gers, strings, filenames and (iii) outputs, which are also

objects like the inputs. In addition, developers can set

other variables (e.g. category, and description) which
are used in automatically generating the module docu-

mentation [16].

Based on the definition of the input and output sets,

the base abstract classes have functionality (which need
not be touched by more concrete implementations) to

(i) parse command line arguments if the algorithm class

is invoked as an application; (ii) automatically create a
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Fig. 6 Sample algorithm implementation. A new algorithm usually requires the implementation of two methods. The first is Initialize
(shown in detail in this figure) where the inputs, outputs and parameters are defined. The second is Execute (not shown) which simply
takes the specified inputs and parameters and runs the actual algorithm to generate the desired output. Derived classes can have
customized graphical user interfaces by overriding the CreateGUI method. See Appendix B for a complete example on integrating an
algorithm into our framework.

GUI using the CreateGUI method (this method can be
overridden by some algorithms to generate a more cus-

tomized interface); and (iii) perform testing by parsing

a test file. These classes can then be used (i) to invoke

the algorithm (using an Execute method), (ii) to be-
come a component of other algorithms (e.g. the image

smoothing algorithm is invoked by the edge detection

algorithm), (iii) to create standalone applications with

an image viewer and a GUI, and (iv) to integrate indi-

vidual components into a larger application.

2.2 Core Classes:

The new framework has at its core the following [Incr
Tcl] classes:

1. bis_option encapsulates an option value (e.g. smooth-

ness factor, etc.). An option can have a type of:

listofvalues, boolean, real, integer, string or filename.

Within this class there is functionality for creating
an appropriate GUI for each option. For example, if

the boolean option is specified a checkbox is created

that allows the user to toggle the variable.

2. bis_object encapsulates the input and output ob-
jects of the algorithms. The core objects supported

are: image, transform (both linear and non-linear),

polygonal surface, landmark set and electrode grid.

3. bis_basealgorithm is the core algorithm class from
which all algorithms are derived. It has all the func-

tionality for manipulating options, inputs and out-

puts.

4. bis_algorithm is derived from bis_basealgorithm

and adds the functionality needed for taking an al-

gorithm and making it into a component or an ex-

ecutable. More specialized classes are derived from

bis_algorithm such as bis_imagetoimagealgorithm

which serves as a base for algorithms which take a
single image as an input and produce a single image

as an output.

5. bis_guicontainer is a derived class of bis_algorithm

and serves as a parent class for creating multi-algorithm
containers (e.g. a tabbed-notebook style GUI where

each tab is a separate algorithm).

2.3 Application Architecture

Structure: Applications in general have three parts (Fig-
ure 4A). Part I is the data model which can either be

the full-blown XML-based tree-like bis_datamanager

or a custom array for storing data as needed. All ap-

plications in BioImage Suite can export their datamod-
els in the XML format used by bis_datamanager to

improve flexibility and data reuse. Part II is a set of

viewers and editors for visualizing as well as editing
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images and polygonal objects in a variety of ways. A

core strength of BioImage Suite is that the viewers are

designed to handle 4D (3D+t) data, a legacy of the

origins of BioImage Suite as a cardiac image analysis

package. Part III is the set of modules that are used to
perform the task at hand in customized pipelines.

2.4 Invocation Modes

An algorithm can be invoked in three ways: (i) com-

mand line, (ii) GUI and (iii) “managed” graphical in-

terface (see Figure 8). The framework facilitates the
invocation of the same code regardless of the manner

in which the script is invoked. In Figure 7, we can see

an example of a non-linear registration script being in-

voked in three different ways. Labels A, A1 and A2 show
a GUI with different components showing the input pa-

rameters. Label B in the figure shows a command line

invocation which also provides Unix-style help to the

users. Additionally, the same script can be contained in

a managed container for a larger application (as shown
by label D).

Using this framework the user can use the “Show

Command” button embedded in the GUI (shown in

Figure 7(C)). The user can familiarize themselves with
the algorithm at the GUI level. Then, the user can press

this button and get a detailed command line specifica-

tion for performing exactly the same task by invoking

exactly the same code at the command line. This fea-

ture makes it easier for end-users to develop customized
batch jobs/pipelines.

In “standalone” mode, the module can either func-

tion as a command line only tool (depending on the

setting of the dogui flag), or as an applet with its own
GUI and viewer. There are four more global command-

line settings as follows:

1. --xml,--logo: used to generate Slicer XML descrip-

tions,

2. --loni: used to output LONI pipeline XML module

descriptions,
3. --pset: used to query the SQLite-based parameter

database for a complete parameter set, and

4. --ctest: used to run regression tests as part of

nightly testing.

The modules in “managed” mode can also be in-
voked directly inside other modules. For example, the

linear intensity registration module functions either as

a standalone module, or is called by the nonlinear in-

tensity registration module to estimate a registration to
be used as an initial condition for the subsequent non-

linear registration. The fundamental idea behind all of

this is ensuring consistent performance. Each algorithm

in BioImage Suite should be accessible in exactly one

way and packaged in a proper module where the param-

eters are formally specified. Hence if there is an error,

that module can be invoked directly using the exact

same parameters that were used by another module or
component to debug the issue. Even in managed mode,

a module can generate (via the API call GetComman-

dLine) a detailed command-line specification that can

be used to invoke this module directly.

2.5 Algorithm Implementation (see Figure 4C)

Overview All core algorithms in BioImage Suite are im-
plemented in C++. These often have as an access point

a single C++ class which derives from a VTK parent

class (e.g. vtkAlgorithm, vtkImageAlgorithm, etc.) that

is wrapped to allow it to be accessed from Tcl code.

Dataflow: Data and parameters are supplied to the al-
gorithm from the module superstructure written in Incr

Tcl (Figure 4B). BioImage Suite modules exchange data

in objects that are wrappers around VTK data sets.

These contain both a pointer to a VTK-derived object

(e.g. vtkImageData in the case of images), as well as
auxiliary information such as filenames, colormaps, im-

age headers, etc. There are five core objects that are

used to represent (i) images, (ii) transformations (ei-

ther linear or non-linear), (iii) surfaces, (iv) landmark
sets and (v) electrode grids (landmark set can be tai-

lored to the representation of implanted recording elec-

trodes). All five of these are implemented as Incr Tcl

classes and derive from a single parent class that spec-

ifies a common interface (e.g. Clear, Load, Save, Copy,
ShallowCopy, Get/Set FileName, Get/SetVTKObject,

etc.). The input data and input parameters obtained

from the user interface (written in Tcl - Figure 4B) are

passed onto the underlying algorithms written as C++
classes. Within the C++ class, we have short VTK

pipelines, possibly augmented with ITK-derived code

or CUDA accelerated code. The outputs are made avail-

able as the outputs of the core C++ class and these are

copied into the OutputArray objects (which use VTK
data structures) of the module, prior to the deletion of

the C++ object.

Base Functionality: In addition to VTK and ITK, BioIm-

age Suite C++ code leverages functionality from La-

pack [6] and the GDCM DICOM library [11]. A large
amount of BioImage Suite specific core functionality

(e.g. optimizers) is also available to speed up algorithm

implementations.

elizabethwalker
Text Box
This is an author-produced, peer-reviewed version of this article.  The final publication is available at www.springerlink.com. Copyright restrictions may apply.  DOI: 10.1007/s12021-010-9092-8




8

Fig. 7 This figure shows all the different ways in which a script can be invoked. Inset (A), (A1) and (A2) shows the graphical user
interface (A) with the parameters in the standard tab (A1) and the advanced tab (A2). Additionally, the user can click on the “Show
Command” button highlighted with a red rectangle that shows how the script can be invoked on the command line (Inset C). The
script can also be invoked on the command line (Inset B) and in the situation where incorrect input parameters are provided, a
Unix-style help is shown that shows the format for the input and input parameters. Additionally, the script can be contained in a
managed framework (Inset D) where it becomes a menu item that invokes the same graphical user interface options as in Inset (A).

2.6 Customized workflow example: Diff-SPECT

processing for epilepsy

Using this framework, customized workflows can be cre-
ated to enable the development of complex and stream-

lined algorithms. In these customized workflows, the

output of one algorithm can be used as the input to

another algorithm. Here we present an example of a

customized workflow for Ictal-Interictal SPECT Anal-

ysis by SPM Half Normalized (ISASHN) algorithm [5]

used to assist image-guided surgery research. First, two

SPECT images are linearly registered to each other and
then nonlinearly registered into MNI (Montreal Neuro-

elizabethwalker
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Fig. 8 BioImage Suite Module Architecture – detail view of Fig. 4B: the structure of a Module. The inputs and parameters can be
specified in three ways: (i) command line, (ii) GUI, (iii) direct application programming interface (API) calls. Then the exact same
Execute method is invoked and the outputs stored/displayed as appropriate.

logical Institute) space. The registered images are then

masked, smoothed, and intensity normalized. A t-test
is performed comparing these images to a healthy nor-

mal population. The resultant image, containing a t-

value at each image location, is thresholded and clus-

tered to produce the final output. This workflow can

be implemented as a single algorithm object with its
own GUI and testing protocol that sequentially calls

other algorithm objects as presented in Figure 9. The

algorithm object can be instantiated from our BioIm-

age Suite VVLink gadget to connect to the BrainLAB
Vector Vision Cranial system for integration into neu-

rosurgical research [27]. With the interoperability fea-

tures that this new framework provides (Figure 9), we

can create complex workflows, such as the one presented

here, using a graphical tool such as the LONI Pipeline
[19].

2.7 Interoperability

This framework supports easy interoperability of BioIm-

age Suite components with other software environments.

For example, all command line tools (over 90 of them

at this point) support the Slicer 3 execution interface
by providing an XML description when invoked using

the --xml flag (See Section 2.4). This allows Slicer to

scan the BioImage Suite binary directory and find all

its components as plugins. Panel B in Figure 10 partic-
ularly shows BioImage Suite modules being recognized

(red rectangle in Panel B) and available in Slicer. Sim-

ilarly, we can recognize other command line tools that

Fig. 9 Customized workflow using the unified BioImage Suite
framework. Here the algorithm modules are depicted in blue (with
the actual script name below it). In this workflow, the interictal
and ictal SPECT are first linearly registered and output is then
non-linearly registered with the MNI Template SPECT. The re-
sult of the registration is then processed using various algorithms
(mask, smooth and intensity normalized). Then a t-test is per-
formed with the mean and standard deviation from a control
population. The output tmap is then thresholded and clustered
to get the final output image.

adhere to this interface and use them as plug-ins within
some of the BioImage Suite GUI applications/applets.

In addition (via the use of the --loni 1 construct),
BioImage Suite components output an XML descrip-

tion that is compatible with the LONI pipeline envi-

ronment [19].
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Fig. 10 The new framework facilitates interaction with 3D Slicer. Panel A shows the autogenerated BioImageSuite User Interface
components in 3D Slicer. Panel B shows BioImageSuite modules being identified and loaded directly into Slicer’s user interface. Panel
C shows a 3D Slicer command line module recognized and loaded in BioImageSuite. Panel D shows a LONI pipeline form where inputs

can be connected to various algorithm using a user interface.

3 Testing and Verification

3.1 Regression and Unit Testing

Research software is continually evolving and adapt-

ing to meet the ever changing needs of its users. These

needs put unique strains on the conventional software

engineering process of first designing the software, then

implementing it and finally thoroughly testing it prior
to its release to the community at large. In practice,

in research-related software, the design and implemen-

tation processes are always ongoing and the user in-

evitably gets a “cut” of the software that is frozen for
only a short amount of time. This problem has led

to the development of methodologies falling under the

paradigm of “extreme programming” [2] in which the

components of the software are continuously tested via

a set of test functions and the output of each test com-
pared to the correct (manually generated) output for

each component.

Our object-oriented framework enables an expanded

testing setup and eliminates the need for individual
testing of scripts for each module - unit testing. The

process of creating tests boils down to the following

straightforward two-step procedure: (i) creating gold-

standard results and (ii) adding a line in the test-definition

file.

The ease of this framework has enabled the addi-

tion of over 300 tests (in this newer format). We use

the following test flags that allow robust testing of the

algorithms.

– ctestexact : If enabled then comparison is done via

subtraction; otherwise correlation is used. Allowed
values are either 0 (Off) or 1 (On - default). This

only applies to images and is useful in cases such

as image registration where we can never warp the

target image to look exactly like the reference.
– ctestthr : Threshold for subtraction or correlation.

Default value is “0.001”. Allowed range is from 0

to 100000. If ctestexact ==1 then this will cause

the test to fail if Max|I1 − I2| > thr, where I1, I2
are image intensity values and thr is the threshold
value. If ctestexact ==0 then failure will be declared

if the output of the correlation value r < thr.

– ctestsave : If ctestsave is enabled, then the re-

sults of the computation are saved. Allowed values
are either 0 (Off - default) or 1 (On). If the flag is

set to 0 (Off), testing output files are not saved, i.e.

the comparison is done (as always) in memory and
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then these objects are simply deleted. If the flag is

set to 1 (On), the output is saved to automatically

generated filenames.

– ctesttmpdir : This flag specifies the output direc-

tory to save output files generated during testing.
The default value is “ ”. If the default value is given,

then an automatically generated filename is used to

save the file in the current directory; otherwise, the

directory of the automatically generated filenames is
changed to that specified by the ctesttmpdir flag.

– ctestdebug : If the name of a text file is specified

for ctestdebug variable, then a textfile with that

name is created with debug output. Default value is

“ ”. If no name is specified for the text file, no log
file is created.

All of these can be specified either on the command

line e.g.

bis_castimage.tcl --ctest testlist.txt \\

--ctestsave 1 --ctestdebug test2.log \\

--ctesttmpdir /tmp

or inside the testfile. This command takes the complete
test description file (testlist.txt), extracts the relevant

tests for the module at hand and runs them.

The regression testing is particularly valuable as we

migrate BioImage Suite to newer versions of the base
libraries (e.g. VTK and ITK). Regression testing can

highlight for us which aspects of the software are “bro-

ken” by migration and help with the upgrade. For ex-

ample, our testing suggests that the current version

runs just fine with Tcl 8.5/VTK 5.6 – though we will
still use Tcl 8.4.14/VTK 5.2 for the upcoming 3.0 re-

lease.

3.2 Nightly Testing

Nightly testing is done with the help of the functional-

ities in CDash [13]. The implementation of our testing

framework allows for easy addition of test cases. For
testing, we maintain a list of all the test cases which

have the following format:

algorithm name : \\

input parameters and their values: \\

input files : \\

expected output file

bis_smoothimage: -blursigma 2.0: \\

MNI_T1_1mm.nii.gz: MNI_T1_1mm_sm2.nii.gz

When the nightly testing process starts, it goes through
and tests each algorithm. Since in the new framework

each algorithm is a unit of BioImage Suite, our nightly

regression testing is similar to unit testing. For each

algorithm, it looks up its name in the first column of

the list, and if the name matches then it reads in the

remaining arguments and performs the test. As shown

above, to test the image smoothing algorithm we spec-

ify the name of the script, the input parameters and
their values (blursigma=2.0 in this case), the input file

name and the expected output file name to compare the

output with. The obtained output is compared with the

expected output and based on the comparison a “test
passed” or “test failed” result is obtained. Therefore,

adding more test cases is as simple as adding another

line to the list of nightly tests for that algorithm.

Virtualization: Virtual Machines (VM) allow for com-
pletely controlled, hardware-independent operating sys-

tem environments with minimal software installation

(e.g. Windows 2000, Visual Studio 2003.NET, Emacs,

Subversion, base libraries) avoiding any unnecessary
software that might interfere with development (espe-

cially on Windows). We use VMware Server [23] to

run multiple operating systems on a single machine.

We have a number of VM’s, including an Open Dar-

win virtual machine that is binary compatible with the
x86 version of Mac OS X. This arrangement is used

for testing on a multitude of Linux, Mac and Windows

distributions which would be impractical on actual ma-

chines.

Dashboard Setup: Figure 11 shows a screenshot of the

nightly dashboard which shows the platforms that the

scripts are tested on. As of now, the nightly tests run
on Linux (CentOS), Windows (7, Vista and XP), Power

Mac and Mac OS X. Figure 12 shows a screenshot of a

list of some of the scripts as can be seen on the dash-

board. This list allows us to readily know whenever a

script fails on a particular platform.
Using our extensive virtual machine setup, we per-

form nightly testing on all three major platforms (Linux,

Windows, Mac OS X) as well as variations within these

(e.g. Windows XP/VISTA/7 with both Visual Studio
2008 and the mingwin gcc compiler, Linux 32-bit and

64-bit with various versions of gcc, Mac OS X intel and

powerpc). Specifically nightly testing is performed on

the following operating systems (all are 32-bit unless

otherwise stated):

1. Windows 2000 – using the MinGW gcc 3.4 compiler.
2. Windows XP – using Visual Studio 2008.

3. Windows VISTA – using Visual Studio 2008.

4. Mac OS X 10.4 powerpc – using gcc 4.0.

5. Mac OX X 10.4 intel – using gcc 4.0.
6. Mac OX X 10.5 intel – using gcc 4.0.

7. Linux (CentOS 4.3) – using gcc 3.2.

8. Linux (CentOS 5.4) – using gcc 3.4.
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Fig. 11 In this figure, we can see the various platforms that the scripts are tested on - Linux, Windows, Mac OS X and their variations
(e.g. Windows XP/VISTA/7 with both Visual Studio 2005/2008 and the mingwin gcc compiler, Linux 32-bit and 64-bit with various
versions of gcc, Mac OS X Intel and PowerPC). This happens on a nightly basis and ensures multi-platform operability.

9. Linux 64-bit (CentOS 5.4) – using gcc 3.4.

10. Linux (Ubuntu 6.06 LTS) – using gcc 4.0.
11. Linux 64-bit (CentOS 5.4) – using gcc 4.1.

12. Linux 64-bit (KUbuntu 9.10) – using gcc 4.4.

Most of the above testing setups are run as virtual

machines with the exceptions of Windows VISTA and

the MacOS X test machines. We use a mixture of real

and synthetic data with total testing time ranging from

about 1 hour on the newer machines to over 7 hours on
our G4 MacMini.

Testing the Binary Version: A common problem with

many software testing setups is the fact that the testing
is done from the build directory. While this is useful,

most users will not have a build directory, rather they

will be using the binary version of the software which

is the result of a ‘make install’ type process. As part of

our testing setup we have the capability to run testing
from this binary version of the software. Specifically, a

CMakeLists.txt file is created as part of the installation

and included with this in a ‘testing’ subdirectory which

can subsequently be configured to run the tests. In this
way we can verify that libraries and other scripts do not

rely on the existence of the build directory to satisfy

dependencies, something that would be problematic in

real world use where the build directory does not exist.

Other Issues: The use of multiple operating systems

and compilers enables improved quality assurance as,

for example, questionable code constructs which do not

result in problems in one compiler might cause fail-

ure using another. When a test passes on all compil-
ers/operating systems it suggests that the code is rea-

sonably clean.

In this multi-platform testing a key problem is round-
off errors especially with respect to resampling images.

A voxel intensity value could be 1.0000001 in platform

A, whereas it ends up as 0.999999 in platform B which

when truncated to an integer results in a difference of
1. While these events are rare, given an image of tens of

millions of voxels (e.g. 256×256×256 voxels) such round

off errors need only have a probability of one in a mil-

lion before they are practically guaranteed to occur in

an image. To overcome such issues, the regression test-
ing often will compare images by computing the corre-

lation between them (with a high threshold e.g. 0.999)

as opposed to simply subtracting them and looking for

the maximum value – this is controlled by the setting
of the ctestexact and ctestthr parameters.

Another related issue is roundoff errors in iterative

processes such as non-linear registration which only be-
come an issue after running multiple iterations. These

only become apparent when the testing is run with real

data (e.g. large images) and realistic numbers of iter-

ations. This is why we use full size images so as to be
able to discover errors of this type; small images and

low iteration counts never quite reveal problems of this

nature.
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Fig. 12 This snapshot shows a sample list of scripts being tested
and their status on a particular platform. As of now 304 total tests
are being executed daily, as shown here.

4 Discussion & Conclusions

A core strength of this framework is that most develop-

ers can simply work at the lower two levels (Panels B

and C of Figure 4) to produce new modules which are
also easily accessible as standalone applications (both

GUI and command-line). These modules can be tested

and used separately and then, if needed, migrated to

“larger” BioImage Suite applications later. A second
advantage of this setup is that users can learn how to in-

voke these modules at the Graphical User Interface level

and then get a detailed command-line specification us-

ing the “Show Command Line” option embedded in the

GUI. This command will perform exactly the same task
by invoking exactly the same code; customized batch

jobs/pipelines are easily created this way.

The strengths of BioImage Suite’s new framework

are that it facilitates easy development and encapsula-

tion of image analysis algorithms which allows the de-

veloper to focus on the development of the algorithm.
It allows for easy creation of user interfaces and robust

testing of the algorithms on multiple platforms. Addi-

tionally, customized workflow pipelines have been cre-

ated by developers to allow for the creation of complex

algorithms.
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A Obtaining and compiling the source code

Since we cater to a wide variety of users, we provide binary dis-
tributions as well as source code for expert users. We provide bi-
naries for Windows, Linux and Macs that can be easily installed.
On Microsoft Windows, we provide a self-contained installer file
that completely automates the procedure. On UNIX derivatives
(this includes Linux and the Apple Macintosh Operating System)
the procedure involves uncompressing one file in the /usr/local
directory or another location of your choice.

A.1 Compiling the source code

To compile the source, we use CMake to configure the user envi-
ronment which then creates appropriate project files (Solutions
for Visual Studio, Makefiles for Unix derivatives). To ensure com-
plete compatibility, we ship BioImage Suite with the exact ver-
sions of all the software it depends on. This avoids compatibility
issues and reduces installation overheads for the user. BioImage

Suite includes compatible versions of the Visualization Toolkit
(VTK), Insight Toolkit (ITK), Cross Platform Make (CMake),
CLAPACK, MySQL, TCL and Grassroots DICOM (GDCM). In

the CMake process, these libraries need to be accurately found
to ensure an compatibility issues. Once the project files are cre-
ated, compiling and source code is similar to compiling VTK,
ITK and other software that uses CMake. More details including
step-by-step instructions and screenshots can be found in Chap-
ter 3 - Starting and Running BioImage Suite of our 343-page
manual available in HTML and PDF format on our website -
www.bioimagesuite.org.

B Integrating an algorithm into the framework

In order to use the framework, the actual algorithm has to be
written as a C++ class similar to any VTK class. Once that class
is compiled with Tcl wrapping on, it is ready to be tested. Here
we look at an example where we create a application that creates
a module for the Gaussian Smoothing class in VTK (vtkImage-
GaussianSmooth).

B.1 Initial setup

#!/bin/sh

# the next line restarts using wish \

exec vtk "$0" "$@"

lappend auto_path [ file dirname [ info script ]]

lappend auto_path [file join [file join [ file dirname \

[ info script ]] ".." ] base]

lappend auto_path [file join [file join [ file dirname \

[ info script ]] ".." ] apps]

B.2 Class Definition

Each class needs at least three methods (in addition to the con-
structor). The Initialize method is used to define the lists of
inputs, outputs and options. This ends by calling the initialize
method of its parent class which will append to these lists and
then go on to initialize everything. The GetGUIName method
simply gives the “English” name for the class. The Execute method
is where the actual execution happens and where the algorithm
methods are invoked.

package provide bis_smoothimage 1.0

package require bis_imagetoimagealgorithm 1.0

itcl::class bis_smoothimage {

inherit bis_imagetoimagealgorithm

constructor { } { $this Initialize }

public method Initialize { }

public method Execute { }

public method GetGUIName { }

{ return "Smooth Image" }

}
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B.3 The Initialize Method

itcl::body bis_smoothimage::Initialize { } {

#commandswitch, description, shortdescription, \

optiontype, defaultvalue, valuerange, priority

set options {

{ blursigma "kernel size [mm/voxel] of FWHM filter size"

"Filter Size" { real triplescale 100 } 2.0 { 0.0 20.0 }

0 }

{ unit "kernel size unit mm or voxels " "Units"

{ listofvalues radiobuttons } mm { mm voxels } 1}

{ radius "radius factor of the gaussian in voxels"

"Filter Radius" real 1.5 { 0.0 5.0 } -1 }

{ dimension "2 or 3 to to do smoothing in 2D or 3D"

"Dimensionality" { listofvalues radiobuttons } 3

{ 2 3 } -999 }

}

set defaultsuffix { "_sm" }

set scriptname bis_smoothimage

set completionstatus "Done"

#

# Documentation

#

set description "Smoothes an image with a \

specific gaussian kernel."

$this InitializeImageToImageAlgorithm

}

B.4 The Execute Method

The Execute method contains the code that is executed when
the user executes the algorithm. The input data as well as the
input parameters are obtained and the algorithm is executed.
The output image or surface, depending on the algorithm being
tested, is saved as per the user’s preference.

itcl::body bis_smoothimage::Execute { } {

Part 1 — get the parameters and inputs

set blursigma [ $OptionsArray(blursigma) GetValue ]

set unit [ $OptionsArray(unit) GetValue ]

set radius [ $OptionsArray(radius) GetValue ]

set dimension [ $OptionsArray(dimension) GetValue ]

}

Next get the actual input image. This is of type pxitclimage
(a wrapper around vtkImageData). For surfaces, we have pxit-
clsurface, which is a wrapped around vtkPolyData.

set image_in [ $this GetInput ]

# To get the spacing first we need a pointer to the

# encapsulated vtkImageData obtained using the

# GetImage method of pxitclimage

set spacing [[ $image_in GetImage ] GetSpacing ]

# Compute proper smoothness kernels if unit is voxels or mm

if { $unit == "voxels"} {

for { set j 0 } { $j <=2 } { incr j } {

set sigma($j) [ expr $blursigma * 0.4247 / [ lindex \

$spacing $j ]]

}

} else {

for { set j 0 } { $j <=2 } { incr j } {

set sigma($j) [ expr $blursigma * 0.4247 ]

}

}

set radiusz $radius

if { $dimension == 2 } {

set radiusz 0

set sigma(2) 0.0

}

This is the actual VTK pipeline code, where vtkImageGaus-
sianSmooth is invoked with the user specified input image and
input parameters.

# Actual vtk code

set smooth [ vtkImageGaussianSmooth [ pxvtable::vnewobj ] ]

$smooth SetStandardDeviations $sigma(0) $sigma(1) $sigma(2)

$smooth SetRadiusFactors $radius $radius $radiusz

$smooth SetInput [ $image_in GetObject ]

$this SetFilterCallbacks $smooth "Smoothing Image"

$smooth Update

Next we store the output resulting from the execution of the
algorithm.

# When done store the output in the Output Object

set outimage [ $OutputsArray(output_image) GetObject ]

$outimage ShallowCopyImage [ $smooth GetOutput ]

$outimage CopyImageHeader [ $image_in GetImageHeader ]

# Add a comment to the image header (if NIFTI!)

set comment [ format " [ $this GetCommandLine full ]" ]

[ $outimage GetImageHeader ] AddComment "$comment $Log" 0

# Clean up

$smooth Delete

return 1

}

This checks if executable is called (in this case bis smoothimage.tcl)
if it is, then execute

if { [ file rootname $argv0 ] == [ file rootname \

[ info script ] ] } {

# this is essentially the main function

set alg [bis_smoothimage [pxvtable::vnewobj]]

$alg MainFunction

}
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