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Abstract 
 

Ni-Mn-Ga is a ferromagnetic shape memory alloy that deforms by twin boundary motion.  The magneto-mechanical 
properties depend strongly on the twin microstructure.  A thermomechanical treatment was applied to a Ni-Mn-Ga 
single crystal with coexisting 10M and 14M martensite structures to create twin boundaries and align the short 
crystallographic c direction preferentially perpendicular to the surface.  The resulting twin structure was 
characterized using atomic force microscopy (AFM) to obtain the surface relief caused by twinning.  Magnetic force 
microscopy (MFM) was used to find the direction of easy magnetization (which coincides with the crystallographic 
c direction) of each twin.  Among 18 possible twinning histories, ac twinning in 10M martensite was identified as 
the unique solution. The combination of AFM and MFM after thermomechanical treatment provides a non-
destructive characterization of the twin microstructure including the identification of the crystallographic 
orientation of each twin and of each twin boundary plane. 
 

Introduction 
 

Ni-Mn-Ga is a magnetic shape memory alloy (MSMA) with potential applications in sensor and actuators 
devices, magnetic refrigeration, power generation, and computer memory. The magnetic, mechanical, and magneto-
mechanical properties of Ni-Mn-Ga alloys depend strongly on the composition (e.g., [1,2]), martensite structure 
(e.g., [3,4]), and twin microstructure (e.g., [5]). Though the martensite structure is controlled to a large extent by the 
composition, there are compositions around 29-30 at.-% Mn and 20-21 at.-% Ga, for which multiple martensite 
structures were reported [6,7]. Due to the monoclinic lattice, a variety of twinning modes operate in both 10M and 
14M martensites [8,9]. The magnetic-field-induced strain (MFIS) strongly depends on the twin microstructure which 
can be modified through appropriate training (e.g., [10]). Furthermore, the twin microstructure changes during cyclic 
experiments, e.g., via actuation in a rotating magnetic field [5,11]. The experimental verification of the correlation 
between twin microstructure, active twinning modes, and MFIS requires the non-destructive and spatially resolved 
characterization of twinning modes. It was shown in a recent study that atom probe techniques may be used to solve 
this task [12]. The aim of the present work is to expand on that study and systematically outline how the combined 
use of atomic force microscopy (AFM) and magnetic force microscopy (MFM) can be utilized to characterize 
crystallography and local arrangement of twin variants. 
  

Twinning and Surface Relief 
 

The surface relief at the mesoscopic scale caused by twinning is dependent on martensite orientation and 
the martensite structure.  For monoclinic martensite (10 M and 14M) and surface planes parallel to {100}, the lattice 
parameters of the unit cell are correlated to the surface relief angle φi (i = a, b, c) by [12,13]: 
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where a, b, and c are the lattice parameters when using a pseudo orthorhombic or a pseudo tetragonal unit cell [14]1

 

a a
c

c

φb

x z

a a
c

c

φb

x z
C

C
A

b

.  
The index i of φi indicates which crystallographic direction is parallel to the twinning plane. The twinning modes are 
also named according to the lattice parameters which switch positions across the twin boundary.  Fig. 1 shows the 
example of ac twinning with the relief angle φb.  Table I gives possible φi values depending on the type of twinning 
that occurs and which martensitic variant is present. Values for a, b, and c are taken from Sozinov et al. [3].   
 

 
Fig. 1.  Schematic illustrating the surface relief produced on a {100} surface by ac twinning.  This is a cross-section 
of a twin perpendicular to the y direction.  The orientation of the orthorhombic unit cell is indicated.  The thick black 

lines are twin boundaries. The twin sequence is CAC (the letters indicate which crystallographic direction is 
perpendicular to the surface) and the surface relief angle is φb. 

 
 

Table 1. Surface relief angle φi values for specific twinning systems in orthorhombic (14M) 
 and tetragonal (10M) martensite calculated with Eqs. 1-3 and using lattice parameter of [3]. 

 
Relief Angle φa φb φc 

Twinning bc ac ab 
Orthorhombic (14M) 2.7° 6.5° 3.7° 

Tetragonal (10M) - 3.5° - 
 
 

The surface relief angles listed in Table 1 assume that the twins are formed in a region in which the surface 
was flat across the entire area prior to the formation of the twin, i.e., in the austenite phase. This is not necessarily 
the case.  Furthermore, the surfaces are assumed to be parallel to {100} planes. To illustrate the variety of possible 
surface reliefs, a thought experiment is presented here.  Assume a surface contains a relief due to ac twinning as 
schematically shown in Fig. 1. Individual twin domains are labeled A and C according to the crystallographic 
directions a and c, which are perpendicular to the surface. Now the surface is polished perfectly flat (i.e., the twin 
relief is removed as in Fig. 2a).  Upon heating through the reverse martensitic transformation, the twin boundaries 
disappear.  A surface relief is formed (Fig. 2b) with angles equal and opposite to those in Fig. 1. 

In the above thought experiment, the same twinning mode which was present before heating reappears 
during cooling. These are the only possibilities for twinning in 10M martensite. In 14M martensite, the twinning 
mode occurring during cooling may differ from the twinning mode present before heating. The next thought 
experiment explores the combination of different twinning modes using the example of bc twinning during cooling. 
There are again four possibilities.  First, for twinning on the previous twinning planes (i.e., inclined to the lower left) 

1 Due to the lattice modulation, the symmetry of the unit cell is actually monoclinic. However, when referring to MFIS, the pseudo orthorhombic 
and pseudo tetragonal unit cells derived from an orthogonal distortion of the cubic unit cell of the austenite phase are more convenient. Therefore, 
these unit cells are used throughout this paper; where for convenience, the prefix “pseudo” is dropped. 
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and a sequence where CAC becomes CBC, the surface relief angle will change by -φa during cooling so that the 
final relief angle equals the difference of φb - φa (Fig. 4a).  Second, the twinning sequence may become BCB and the 
surface relief angle will change by +φa during cooling to a total angle of φb + φa (Fig. 4b).  Third, for twinning on 
twinning planes inclined to the lower right and a CBC twinning sequence, the surface relief angle will change to a 
total of φb + φa (Fig. 4c).  And again the fourth possibility is that the twinning plane orientation may change and the 
twinning sequence becomes BCB. In this case, the surface relief angle equals the sum of φb - φa (Fig. 4d). 
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Fig. 2.  The ac twin found in Fig. 1 (a) after polishing and (b) at a temperature above the  

martensitic transformation where a double kink appears at the position of the former A domain.   
The angles are equal and opposite to the angles in Fig. 1. 
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Fig. 3. Twinning options for ac twinning when cooling from the situation shown in Fig. 2b.  (a) Twinning on the 
same planes as in Fig. 2a and the same twin sequence ACA changes the relief angle by -φb and results in a flat 
surface; (b) reversal of the twin sequence to ACA increases the relief angle by +φb to a total angle of 2 φb; (c) 

changing the twinning planes also doubles the final relief angle when keeping the sequence CAC; and (d) changing 
both the twinning sequence (from CAC to ACA) and the twinning plane orientation results in a flat surface. 

 
 
 There are other possibilities upon cooling from Fig. 2b.  It is possible that twins will not form and the 
surface relief angle will be equal to φb.  Furthermore, all twinning modes may occur with the traces of the twinning 
planes at different positions.  The corresponding relief angles are φa, φb, and φc. Table 2 lists all possible relief 
angles from starting with one twinning type before thermomechanical treatment and upon cooling with the same 
type or different type of twinning.  The probability of each twinning event depends on extrinsic factors. 
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Table 2. Total surface relief angle values after polishing going from twinning  
mode 1 to twinning mode 2 (or vice versa) upon heating and cooling 

 
Structure Twinning 

mode 1 
Twinning 

mode 2 
Relief angle for 

additive shear [º] 
Relief angle for 

subtractive shear [º] 
Tetragonal (10M) ac ac 7.0 0.0 
Orthorhombic (14M) ab ab 7.4 0.0 

bc bc 5.4 0.0 
ac ac 13 0.0 
ab ac 10.2 2.8 
bc ac 9.2 3.8 
ab bc 6.4 1.0 
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Fig. 4. Twinning options for bc twinning upon cooling when starting from the situation shown in Fig. 2b. (a) 

Twin sequence CBC and the same twin plane orientation as before heating leads to a final surface relief 
angle of φb - φa; (b) twin sequence BCB and the same twin plane orientation as before heating leads to a 
final surface relief angle of φb + φa ; (c) twin sequence CBC with a different twinning plane orientation 

results in of φb + φa; and (d) twin sequence BCB with twinning planes inclined to the right results in φb - φa. 
 
 

Experimental 
 

A cuboidal sample cut from a Ni50Mn29Ga21 (numbers indicate atomic percent) single crystal with faces 
parallel to {100} was used. Electron diffraction taken on samples from the same crystal revealed two martensite 
structures, namely 10M and 14M. Cartesian coordinates were defined with the short, mid, and long edges parallel to 
the x, y, and z directions (Fig. 5).  The sample was polished with a 1 μm diamond slurry.  The larger face with the y 
direction normal to the surface was finished with Struers  OP-AA acidic slurry to a final surface roughness of 2 nm.  
The sample was then heat treated at 150 °C.  During heating and cooling, a constant load of (15 ± 3) MPa was 
applied in the x direction.  This was done to align the crystallographic c direction parallel to the direction of the 
applied force.  The crystallographic a and b directions align predominantly and with equal probability parallel to the 
y and z directions. 
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Fig. 5. Loading geometry for the thermomechanical treatment. The sample was compressed parallel to the 

shortest edge which is the x direction.  Cartesian coordinates were defined as indicated.  The 
crystallographic c direction is parallel to the x axis over most of the sample.  There are two possibilities for 
the orientation of the crystallographic a and b directions. The AFM and MFM experiments were performed 

on the shaded surface normal to the y axis. 
 
 
A Veeco Dimension 3100 Atomic Force Microscopy System with a Nanoscope V controller was used to 
characterize the surface relief and the magnetic structure of the surface.  The surface relief was imaged in tapping 
mode using a Veeco MESP ferromagnetic tip coated with CrCo.  For MFM, the tip was magnetized so that the 
magnetic moment of the tip was parallel to the tip axis and perpendicular to the sample surface.   
 

Results 
 
 Following thermomechanical treatment, long bands were observed parallel to the z direction on the 
polished surface.  These bands were identified as twins.  AFM and MFM experiments were performed on the twins.  
Typical AFM and MFM results are shown in Figs. 6 and 7. The images were taken from the same larger area with a 
continuous relief of parallel ridges and valleys.  Fig. 6a is a 3D height image of several twins and Fig 6b is a 29 μm 
long cross-section of said twins.  The surface relief angle is φ = 3.9° ± 0.4°.  Fig. 6c and 6d are the 2D height image 
and 2D magnetic image of the area shown in Fig. 6a.   
 

 

φ
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c) d)

c
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Fig. 6.  (a) 3D AFM image of the surface relief found after thermomechanical treatment.  The surface relief 
has bands of positive and negative slope.  (b) A 29 µm cross-section of the surface with a surface relief 
angle φ = 3.9° ± 0.4°.  (c) AFM height image of the surface relief and (d) MFM magnetic image.  The 

strong contrast indicates out-of-plane magnetization while the weak (neutral) contrast indicates in-plane 
magnetization [12]. The direction of magnetization is parallel to the crystallographic c direction.  

Every ridge and valley matches with a change in magnetic pattern. The position of the cross-section (b) is 
marked with a white line in (c). 
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Fig. 7.  Second AFM/MFM analysis from an area close to that shown in Fig. 6. (a) AFM height image and 
(b) MFM magnetic image.  There are two ridges (white lines in a) and two valleys (black lines in a).  The 

MFM contains six contrast changes indicating six twin boundaries. (c) A 32 μm long cross-section (position 
marked in (b) with a white line) yields a surface relief angle φ = 3.7° ± 0.3°. 

 
 

 Each change in slope of the surface relief corresponds to a change in the magnetic image of alternating dark 
and neutral bands.  Dark areas in the MFM image indicate that the c direction is perpendicular to the surface and the 
magnetic moment is going into the surface while bright areas correspond to the magnetic moment coming out of the 
surface [12].  In the bands with soft (or neutral) contrast, the c direction is parallel to the sample surface as indicated 
with a white bar in Fig. 6d. 

Fig. 7 shows the AFM 2D height image (Fig. 7a), the MFM image (Fig. 7b), and a 32 μm long cross-
section of the height image (Fig. 7c) of a different section of the same larger surface area.  For these twins, φ = 3.7° 
± 0.3°.  The AFM and MFM images are similar to what is seen in Fig. 6.  However, there is an area in the middle of 
the scan where no slope change occurs in the surface relief yet there is a change in magnetic contrast from dark to 
neutral and back to dark. Thus, even though the surface is flat, the magnetization changes from perpendicular to the 
surface to parallel to the surface and back to perpendicular to the surface. Thus, there are twin boundaries without 
any surface relief. 
 

Discussion 
 

Since both martensite structures (10M and 14M) are formed in this crystal, all twinning modes with 
corresponding surface relief angles as listed in Tables I and II may be present. There are 18 twinning histories in 
total. The values found for the surface relief angle match for single ac twinning in 10M martensite and for combined 
ac-bc twinning in 14M martensite. 

In Fig. 6, each transition from strong contrast to weak (neutral) contrast in the MFM image corresponds to 
a ridge or valley in the surface relief in the AFM image.  The strong contrast in the MFM image shows an 
alternating of the c direction perpendicular and parallel to the surface. If only considering this case, there are four 
possible twinning histories. If the martensite structure is 10M, the surface relief angle indicates single twinning. 
Thus, if no twins were present before heating, they must have formed during cooling. If twins were present before 
heating, the surface relief formed during heating and, therefore, no twinning occurred during cooling. However, the 
MFM image (Fig. 6d) indicates the presence of twins which rules out the latter case. 

If the martensite structure is 14M, the surface relief angle resulted from a combination of ac twinning and 
bc twinning. If ac twinning was present before heating and bc twinning occurred during cooling, then the twin 
boundaries before and after heat treatment must be inclined towards the lower right (Fig. 8). If on the other hand bc 
twinning was present before heating and ac twinning occurred during cooling, then the twin boundaries before and 
after heat treatment must be inclined towards the lower left. The orientation of the twin boundaries is controlled by 
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the sequence of twins (e.g., CBC in Fig. 8c) and the position of the C twin domain being on the left side of the ridge 
(Fig. 6b,c). Analysis of twin crystallography as schematically shown in Fig. 1 yields the orientation of the twin 
boundary. 

At first glance, the AFM and MFM images of the second situation shown in Fig. 7 are very similar to the 
situation shown in Fig. 6. The difference becomes evident when comparing AFM and MFM images for each case. In 
the first case (Fig. 6), the magnetic contrast changes six times from strong to weak and back to strong, indicating 
that there are six vertical twin boundaries in the field of view. Each twin boundary corresponds to a ridge or a valley 
in the relief which appear as three white lines (for ridges) and three black lines (for valleys) in Fig. 6c. This is in 
contrast to the situation in Fig. 7. Here again, there are six contrast changes in the magnetic image indicating six 
twin boundaries. However, the relief image (Fig. 7a) shows only two ridges (white lines) and two valleys (black 
lines). Therefore, there are two twin boundaries in the center of the image with zero surface relief angles. 

As discussed in the thought experiments in the section on twinning and surface relief, a zero surface relief 
angle can only result when the same twinning mode occurs during cooling as was present before heating. An 
analysis of all combinations of twinning events yields three histories which are in agreement with the final surface 
relief and magnetic structure. The first is outlined in fig. 9. Here, there is one A twin domain present before heating. 
The A domain is sandwiched between two C domains, i.e., the sequence is CAC (Fig. 9a). Upon heating, a double 
surface kink appears with surface relief angle φb (Fig. 9b). Upon cooling, three A domains are formed between C 
domains, i.e., the final twin sequence is CACACAC. The double surface kink present at high temperature disappears 
at the position of the central A domain (which was present before heating). Two new surface kinks appear at the 
positions of the outer A domains with opposite slopes compared to the double kink at high temperature (Fig. 9b). 
The final situation (Fig. 9c) is in agreement with the experimental findings (Fig. 7) when assuming ac twinning in 
10M martensite. 
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Fig. 8. Possible twinning history for the situation shown in Fig. 6. Before heating (a), there is a CAC 

twinning sequence without surface kinks (this is the polished surface). (b) The transformation to the cubic 
austenite phase generates a double kink with surface relief angle φb. (c) After cooling, bc twinning occurs 

resulting in a final surface relief angle of φb - φa. 
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Fig. 9. Possible twinning history for the situation shown in Fig. 7.  (a) Polished area with a CAC twin 

sequence.  (b) Upon heating to above the reverse martensitic transformation temperature, a double surface 
kink with surface relief angle φb forms at the position of the former A domain.  (c) In the event of ac 

twinning during cooling, the central area forms an ac twin with zero surface relief angle while the outer 
areas form ac twins with a surface relief of φb. 

 
 

A number of twinning histories involving a combination of ac and bc twinning modes, leading to the 
characterized relief (Figs. 7a,c) and in agreement with the magnetic domain structure (i.e., with the crystallographic 
c direction out-of-plane where the magnetic contrast is strong, Fig. 7b) may be constructed. As an example, the final 
(impossible) twin sequence, which might be constructed by starting with a CACACAC twinning sequence 
(assuming 14M martensite) before heating and assuming CBCACBC twinning sequence upon cooling is shown in 
Fig. 10. This is in agreement with experiments (Fig.7). However, the direction parallel to the viewing direction is the 
crystallographic b direction in the center twin and the crystallographic a direction in the outer twins. Thus, these two 
twinning systems are not compatible since directions parallel to the twinning planes do not change across a twin 
boundary. This discrepancy rules out any history with combined ac and bc twinning. 

Hence, the history displayed in Fig. 9 is the only consistent history in agreement with experimental 
findings. The crystallography of the twinning systems and twin boundary orientations were completely derived from 
the analysis of the surface relief and the orientation of the magnetic moments as displayed in the MFM images 
without aid of diffraction methods. These results demonstrate that the combination of atomic force and magnetic 
force microscopy provides a powerful non- destructive characterization tool for the spatially resolved 
crystallographic analysis of twinning systems. 

70



 

 

C
CC

C

B
A B

b

a
a

 
 

Fig. 10. Impossible twinning sequence for the situation of Fig. 7. The starting sequence is assumed to be 
CACACAC. After cooling, the central area formed an ac twin with a surface relief angle of 0° while the 

outer areas underwent bc twinning leading to a final surface relief angle φb - φa. The crystallographic 
direction parallel to the viewing direction is b in the center twin domain and a in the outer twin domains. 

This violates compatibility across twin boundaries. 
 
 

Conclusions 
 
 The surface relief after treatment depends on the presence of twins before polishing and on the twinning mode 

during cooling. 
 The crystallography of twinning systems in Ni-Mn-Ga can be characterized using a combination of AFM and 

MFM. 
 The history of twinning events can be deduced from the analysis of surface relief angles in combination with the 

magnetic images. 
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