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Abstract 
Muscles are significant contributors to the high joint forces developed in the knee during human walking. 

Not only do muscles contribute to the knee joint forces by acting to compress the joint, but they also develop joint 
forces indirectly through their contributions to the ground reaction forces via dynamic coupling. Thus, muscles can 
have significant contributions to forces at joints they do not span. However, few studies have investigated how the 
major lower-limb muscles contribute to the knee joint contact forces during walking. The goal of this study was to 
use a muscle-actuated forward dynamics simulation of walking to identify how individual muscles contribute to the 
axial tibio-femoral joint force. The simulation results showed that the vastii muscles are the primary contributors to 
the axial joint force in early stance while the gastrocnemius is the primary contributor in late stance. The tibio-
femoral joint force generated by these muscles was at times greater than the muscle forces themselves. Muscles that 
do not cross the knee joint (e.g., the gluteus maximus and soleus) also have significant contributions to the tibio-
femoral joint force through their contributions to the ground reaction forces. Further, small changes in walking 
kinematics (e.g., knee flexion angle) can have a significant effect on the magnitude of the knee joint forces. Thus, 
altering walking mechanics and muscle coordination patterns to utilize muscle groups that perform the same 
biomechanical function, yet contribute less to the knee joint forces may be an effective way to reduce knee joint 
loading during walking. 

 
 

Introduction 
The human knee joint is subjected to significant loads during walking, with peak loads well-above body 

weight (e.g., Anderson and Pandy, 2001; D'Lima et al., 2007; Glitsch and Baumann, 1997; Heinlein et al., 2009; 
Taylor et al., 2004). The high joint loading is primarily due to muscle forces (e.g., Herzog et al., 2003). Studies 
analyzing muscle contributions to knee joint loads during walking have focused primarily on those muscles crossing 
the knee joint, and found that the quadriceps and gastrocnemius are the primary contributors during early and late 
stance, respectively (Kim et al., 2009; Lin et al., 2010; Morrison, 1970; Schipplein and Andriacchi, 1991; Shelburne 
et al., 2006). Typically, joint forces are determined using the vector sum of the intersegmental joint forces calculated 
using inverse dynamics analysis and the compressive forces from the muscles crossing the joint. However, this 
method does not account for individual muscle contributions to the ground reaction forces since only the net ground 
reaction force is used to determine the intersegmental joint forces. Because muscles can contribute to all joint forces 
(even those they do not span) through their contributions to the ground reaction forces via dynamic coupling (Zajac 
and Gordon, 1989), it is possible for muscles spanning a joint to generate greater joint forces than the forces 
developed in the muscles themselves. In addition, it is possible for muscles that do not span a joint to have greater 
contributions to the joint force than muscles spanning the joint due to their contributions to the ground reaction 
forces. For example, studies have shown that the gluteus maximus and soleus have large contributions to the ground 
reaction forces (Anderson and Pandy, 2003; Liu et al., 2006; Neptune et al., 2004), and therefore these muscles may 
have significant contributions to the knee joint force even though they do not anatomically cross the joint. However, 
few studies have investigated how the major lower-limb muscles contribute to the knee joint contact forces during 
walking. Understanding how individual muscles contribute to knee joint loading has important clinical implications 
for developing rehabilitation strategies that focus on specific muscle groups to help reduce knee joint loads for 
patients with osteoarthritis and other joint disorders (e.g., Fregly et al., 2007; Mundermann et al., 2004; 
Mundermann et al., 2008a).   

The purpose of this study was to use a muscle-driven forward dynamics simulation of normal walking to 
identify individual muscle contributions to the tibio-femoral joint force. Specifically, we examined the joint force 
component parallel to the longitudinal axis of the tibia (i.e., axial force), which is the dominant force component 
(D'Lima et al., 2007). We hypothesized that 1) muscles spanning the knee joint can generate greater tibio-femoral 
joint forces than the forces developed in the muscles themselves, and 2) muscles that do not span the knee joint can 
have significant contributions to the tibio-femoral joint forces through their contributions to the ground reaction 
forces. 

 
Methods 
Musculoskeletal model 

A musculoskeletal model (Fig. 1) was generated using SIMM (MusculoGraphics Inc., Santa Rosa, CA), 
which consisted of a trunk segment (head, torso and arms) and two legs (femur, tibia, patella, calcaneus, mid-foot 
and toe for each leg). The model had a total of thirteen degrees of freedom in the sagittal-plane (translations and 
rotation of the trunk, flexion-extension at the hip, knee, ankle, mid-foot and toe joints for both legs). The motion of 
the patella and the tibia relative to the femur were prescribed as functions of knee flexion (Yamaguchi and Zajac, 
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1989). The model was driven by 25 Hill-type muscle actuators per leg, with activation-deactivation dynamics 
governed by a first-order differential equation (Raasch et al., 1997). The muscles were grouped into thirteen 
functional groups, with muscles within each group receiving the same excitation pattern (Fig. 1). Muscle 
electromyography (EMG) data (see Experimental data below) were used to define the muscle excitation patterns. 
Block patterns were used for muscles where EMG data were not available. Passive torques representing the forces 
applied by ligaments, passive tissue and joint structures were applied at the hip, knee and ankle joints (Davy and 
Audu, 1987). The passive torques for the mid-foot and toe joints were defined using the following equation: 

T = k × (joint angle) + b × (joint angular velocity) 

where joint angle was defined as the angular displacement from the neutral anatomical position expressed in radians, 
and constants k, b were (750, 0.05) for the mid-foot joint, and (25, 0.03) for the toe joint expressed in N⋅m and 
N⋅m⋅s, respectively. Thirty-one visco-elastic elements were attached to each foot segment to model the foot-ground 
contact (Neptune et al., 2000).  
 
Forward dynamics simulation of walking 

A forward dynamics simulation of walking was generated using Dynamics Pipeline (MusculoGraphics, 
Inc., Santa Rosa, CA) and SD/FAST (PTC, Needham, MA). Muscle excitation patterns were fine-tuned using 
dynamic optimization (e.g. Neptune and Hull, 1998), where the differences in kinematics and ground reaction forces 
between experimental and simulation data were minimized over a full gait cycle (from right heel-strike to the 
subsequent right-heel strike). In the optimization, a simulated annealing algorithm was used to minimize the 
following cost function: 
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where miw , is the weighting factor for variable m, miY , is the experimental measurement of variable m, miY ,
ˆ is the 

simulation data corresponding to miY , and miSD , is the standard deviation of experimental variable m at time step i. 
The excitation timing for each muscle was constrained based on the EMG data to ensure that the muscles generated 
force at the appropriate time in the gait cycle.   

 
Experimental data 
 Previously collected experimental kinematic, ground reaction force and EMG data (Neptune and Sasaki, 
2005) were used.  Briefly, ten able-bodied subjects (5 males and 5 females; age 29.6 ± 6.1 years old, height 169.7 ± 
10.9 cm, body mass 65.6 ± 10.7 kg) walked on a split-belt instrumented treadmill (TecMachine, France) at 1.2 m/s 
while data were collected for 15 seconds. Kinematic data collected at 120 Hz (Motion Analysis Corp, Santa Rosa, 
CA) using a modified Helen Hays marker set were digitally low-pass filtered at 6 Hz. Ground reaction force data 
were collected at 480 Hz and low-pass filtered at 20 Hz. Surface bi-polar EMG data (Noraxon, Scottsdale, AZ) were 
collected at 1200 Hz from the soleus, tibialis anterior, medial gastrocnemius, vastus medialis, rectus femoris, biceps 
femoris long head and gluteus maximus. The EMG signals were band-pass filtered (20-400 Hz), fully rectified and 
then low-pass filtered at 10 Hz to generate linear envelope signals. All digital filters were fourth-order zero-lag 
Butterworth filters. All data were normalized to the gait cycle, averaged across steps and then across subjects to 
obtain group-averaged data.  
 
Muscle contributions to the tibio-femoral joint force  
 The axial tibio-femoral joint force was computed as the component of joint contact force parallel to the 
longitudinal axis of the tibia, which includes all forces acting on the joint (i.e., intersegmental joint forces and 
muscle compressive forces). Individual muscle contributions to the axial joint force were obtained at each time step 
in the simulation by 1) performing a ground reaction force decomposition to determine individual muscle 
contributions to the ground reaction forces (Neptune et al., 2001), 2) applying only the muscle force of interest and 
corresponding ground reaction forces to the system and 3) solving the equations of motion to determine the axial 
tibio-femoral joint contact force. This process was repeated for each muscle at each time step over the entire gait 
cycle.  
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Results 
The simulation emulated well the experimentally measured sagittal-plane walking kinematics and ground 

reaction forces (Fig. 2). The mean absolute errors over the gait cycle for the hip, knee and ankle angles, and vertical 
and horizontal ground reaction forces were 3.9, 4.7 and 3.2 degrees, and 5.6 % and 2.7 % body weight (BW), 
respectively. In addition, the resulting muscle excitation patterns matched closely with the experimentally measured 
EMG patterns (Fig. 3). 

The axial tibio-femoral joint force had two major peaks during the stance phase (Fig. 4). The first peak 
occurred in early stance (Fig. 4: ~15% gait cycle), reaching a magnitude of ~2100 N (2.8 BW). The vastii muscles 
were the primary contributors to the joint force, with a peak magnitude of 810 N (Fig. 5a). The rectus femoris, 
hamstrings, biceps femoris short head and gluteus maximus also contributed to the first peak force (Fig. 5a: RF, 
HAM, BFsh and GMAX, 0-25% gait cycle). The second peak in late stance was lower than the first peak (Fig. 4: 
~50% gait cycle), with a magnitude of ~1450 N (2.0 BW). This peak was primarily due to the gastrocnemius, which 
had a peak magnitude of 860N (Fig. 5a: GAS), with the soleus also having a significant contribution (Fig. 5a: SOL). 
The knee joint force during the swing phase was negligible compared to its value in stance. Both the vastii and 
gastrocnemius muscles generated greater axial tibio-femoral joint forces than the forces developed in the muscles 
themselves (Fig. 5b: VAS and GAS: the peak muscle forces were 530 N and 700 N, respectively). 

Some muscles contributed negatively to the axial joint force (Fig. 5a: Others). During the stance phase, this 
occurred as some muscles (e.g., the tibialis anterior) contributed negatively to the vertical ground reaction force (i.e., 
they acted to offload the leg), resulting in a negative axial force. During the swing phase, muscles accelerated the 
shank or thigh in a way that acted to reduce the axial force. 

 
Discussion 

The overall objective of this study was to identify individual muscle contributions to the axial tibio-femoral 
joint force during normal steady-state walking. The knee joint loading pattern during stance had two major peak 
forces, with the first peak occurring in early stance and the second occurring in late stance (Fig. 4). This pattern was 
consistent with previous studies (Anderson and Pandy, 2001; Collins, 1995; D'Lima et al., 2006; Glitsch and 
Baumann, 1997; Heinlein et al., 2009; Shelburne et al., 2006; Taylor et al., 2004; Zhao et al., 2007), although other 
studies have shown an additional sharp peak occurring immediately after heel strike (D'Lima et al., 2005; Morrison, 
1970; Schipplein and Andriacchi, 1991). The vastii and gastrocnemius muscles were the primary contributors to the 
first and second peak forces, respectively (Fig. 5a: VAS: ~15% gait cycle, GAS: ~50% gait cycle). These results 
were consistent with previous modeling studies investigating muscle and knee joint forces (Kim et al., 2009; Lin et 
al., 2010; Schipplein and Andriacchi, 1991; Shelburne et al., 2006), which focused on those muscles crossing the 
knee joint. However, these studies may have underestimated the contributions of these muscles by not accounting 
for individual muscle contributions to the ground reaction forces, which indirectly contribute to the knee joint 
contact force. Our results show that the vastii and gastrocnemius contributions to the axial tibio-femoral joint force 
(Fig. 5a: VAS, GAS) can be greater than the muscle forces themselves (Fig. 5b: VAS, GAS).  

The results also highlighted how muscles that do not cross the knee joint (e.g., the gluteus maximus and 
soleus) can have significant contributions to the knee joint force (Fig. 5a: GMAX, SOL). This occurs through 
dynamic coupling (Zajac and Gordon, 1989) that allows their contributions to the ground reaction forces (Anderson 
and Pandy, 2003; Liu et al., 2006; Neptune et al., 2004) to influence the joint loads. In fact, the soleus had a higher 
peak value than the rectus femoris and hamstring (HAM and BFsh) muscles, which all cross the knee joint (Fig. 5a). 
Thus, when seeking to understand how individual muscles contribute to joint loading, it is important to consider 
their individual contributions to the ground reaction forces.   

The peak axial force occurring in early stance reached ~2.8 body weight (BW), which was slightly higher 
than previous in vivo studies using an instrumented knee implant (~2.2-2.5 BW, D'Lima et al., 2007; D'Lima et al., 
2006; Heinlein et al., 2009; Mundermann et al., 2008b; Zhao et al., 2007). One possible reason for our higher value 
could be due to differences between studies in muscle coordination and walking mechanics in early stance. For 
example, the study by D’Lima et al. (2007) showed representative data of in vivo tibio-femoral joint forces, ground 
reaction forces and knee flexion angles over the gait cycle. During early stance, the joint force was less than two 
times body weight, with the vertical ground reaction force being less than bodyweight and knee flexion being 
approximately 10 degrees (Fig. 3 in D'Lima et al., 2007). This suggests that the subject in their study walked with 
minimal knee flexion, which would require lower vastii forces (i.e., quadriceps avoidance gait) and result in a lower 
tibio-femoral joint force. To test this hypothesis, we generated a post-hoc simulation that emulated a quadriceps 
avoidance gait pattern with a reduced knee flexion angle during weight acceptance. To generate the simulation, the 
experimental knee joint angles used in the cost function ( miY , in Equation 1) were decreased by 10 degrees during 
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10-25% gait cycle when knee flexion reaches its maximum value (Fig. 2: Knee), and the simulation was re-
optimized. When the peak knee flexion was decreased by 10 degrees, the corresponding vertical ground reaction 
force also decreased. These reductions were due to a decrease in the vastii force, which decreased by ~400 N. In 
addition to the vastii force decrease, the force in the biceps femoris short head also decreased, resulting in a 
reduction of the peak axial joint force to 2.4 BW (Fig. 6). The contributions from other muscles (e.g., the gluteus 
maximus) were insensitive to the change in knee flexion. Thus, reducing knee flexion during weight acceptance (i.e., 
quadriceps avoidance gait) appears to be an effective mechanism to reduce the tibio-femoral joint force through 
decreased vastii muscle forces. This strategy appears to be used by knee osteoarthritis (OA) patients, as previous 
studies have shown that knee OA patients walk with reduced knee flexion angles and knee extensor torques during 
weight acceptance (Astephen et al., 2008; Childs et al., 2004; Deluzio and Astephen, 2007; Zeni and Higginson, 
2009).  

In addition to modifying knee joint kinematics, altering muscle coordination patterns to utilize functionally 
redundant muscles may provide an effective way to reduce joint loading. For example, both the gluteus maximus 
and vastii muscles provide body support in early stance (Anderson and Pandy, 2003; Liu et al., 2006; Neptune et al., 
2004). However, the vastii muscles contribute twice as much to the tibio-femoral joint force as the gluteus maximus 
(Fig. 5a: VAS, GMAX, 15% gait cycle). Thus, an effective mechanism to reduce the tibio-femoral joint force in 
early stance would be to rely less on the vastii muscles and more on the gluteus maximus to provide body support. 
Similarly, the gastrocnemius is the primary contributor to the tibio-femoral joint force in late stance and provides 
body support and leg swing initiation (Neptune et al., 2001). Body support and leg swing initiation are also provided 
by the soleus and uniarticular hip flexors, respectively (Neptune et al., 2004). Thus, an effective mechanism to 
reduce knee joint loading in late stance may be to alter one’s muscle coordination pattern to utilize more soleus and 
hip flexor activity and less gastrocnemius activity.   

There are some potential limitations with this study. One limitation is that the simulations were restricted to 
the sagittal plane. A previous simulation analysis of walking showed that different excitation patterns can occur for 
muscles crossing the hip joint (e.g., the gluteus medius) between 2D and 3D simulations (Xiao and Higginson, 
2008). Similarly, a previous inverse dynamics analysis showed that 2D models can underestimate joint forces 
compared to 3D models (Glitsch and Baumann, 1997). Thus, we may be underestimating the contribution of some 
muscles to the tibio-femoral joint force. Future 3D simulation analyses are needed to assess this possibility. In 
addition, the anterior-posterior displacement of the tibia relative to the femur, which was defined as a function of the 
knee flexion angle in our simulations (Yamaguchi and Zajac, 1989), may influence the magnitude of knee joint 
forces because the moment-arms of muscles spanning the knee would be altered. To test this possibility, we 
performed a sensitivity analysis where the relative tibia-femur displacement was altered by ± 5 mm. When the 
muscle excitation patterns were re-optimized, the net knee joint moment was nearly identical with minor 
modifications of the excitation in the biceps femoris muscles, and the peak joint force in early stance changed little 
(max difference ~50 N). Also of note is that the analysis is based upon a generic model. Subject-specific muscle 
coordination and anatomy will influence specific muscle contributions to the joint forces. However, we believe the 
mechanisms identified in this study will be similar in subject-specific models. Future work integrating similar 
analyses with subject-specific models is needed to confirm this belief.   

Another limitation is that our analysis does not attempt to distribute the tibio-femoral joint forces between 
medial and lateral compartments of the tibia. Studies have shown that the loading on the medial compartment is 
greater than the loading on the lateral compartment (Mundermann et al., 2008b; Schipplein and Andriacchi, 1991; 
Shelburne et al., 2006; Zhao et al., 2007). Thus, it is possible that muscles contribute to the medial and lateral knee 
joint forces differently. For example, the study by Shelburne et al. (2006) showed large quadriceps contributions to 
the knee adduction torque during stance (Shelburne et al., 2006), which suggests the quadriceps contribute 
significantly to the medial knee joint force. Future work is needed with a more detailed knee joint model to assess 
individual muscle contributions to the medial and lateral knee joint forces. Finally, some muscles and connective 
tissues crossing the knee joint were not included in the model (e.g., knee ligaments or the tensor fasciae latae, 
gracilis and sartorius muscles), which may contribute to the knee joint force. However, previous studies have shown 
that their influence is much lower than the quadriceps (Lin et al., 2010; Shelburne et al., 2006), although some 
studies have shown that knee ligaments can influence knee joint loading depending on the movement task (Collins, 
1995; Kim et al., 2009; Shelburne et al., 2004). Thus, future work is needed to assess the relative contributions of 
muscles and ligaments to the total tibio-femoral joint force and how these contributions change with different 
walking mechanics and muscle coordination patterns. 

In summary, the present study examined individual muscle contributions to the axial tibio-femoral joint 
forces during walking and found 1) the vastii and gastrocnemius muscles are the primary contributors to the joint 
force in early and late stance, respectively, with the peak force being greater than the muscle forces themselves, and 

5

elizabethwalker
Text Box
NOTICE: This is the author's version of a work accepted for publication by Elsevier. Changes resulting from the publishing process, including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. The definitive version has been published in Journal of Biomechanics, July 23, 2010. DOI: 10.1016/j.jbiomech.2010.06.011.



2) muscles that do not anatomically cross the knee joint (e.g., gluteus maximus and soleus) can have significant 
contributions to the joint force. Finally, small changes in walking kinematics (e.g., knee flexion angle) can have a 
significant effect on the magnitude of the knee joint forces. Thus, altering walking mechanics and muscle 
coordination patterns to utilize muscle groups that perform the similar biomechanical functions yet contribute less to 
the knee joint forces may be an effective way to reduce knee joint loading during walking. 
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Figure Captions: 

Fig. 1: The musculoskeletal model consisted of a trunk segment (head, torso and arms) and two legs (femur, tibia, 
patella, calcaneus, mid-foot and toe for each leg). The muscles included in the model were the GMAX (gluteus 
maximus, adductor magnus), GMED (anterior and posterior portions of gluteus medius), IL (psoas, iliacus), VAS 
(three vastii muscles), RF (rectus femoris), HAM (medial hamstrings, biceps femoris long head), BFsh (biceps 
femoris short head), SOL (soleus, tibialis posterior), GAS (medial and lateral gastrocnemius), TA (tibialis anterior, 
peroneus tertius), PER (peroneus longus, peroneus brevis), EXTDG (extensor digitorum longus, extensor hallucis 
longus), FLXDG (flexor digitorum longus, flexor hallucis longus). The axial knee joint force (arrow) is the force 
component parallel to the longitudinal axis of the tibia.  

Fig. 2: Comparison between the group average experimental (solid line) and simulation (dashed line) hip, knee and 
ankle joint angles, and vertical (vGRF) and horizontal (hGRF) ground reaction forces (units: normalized to body 
weight) over the gait cycle. The shaded regions indicate ± two standard deviations. The vertical lines indicate toe-off.  
 
Fig. 3: Comparison between the group average EMG (solid line) and simulation muscle excitation (dashed line) 
patterns. The shaded regions indicate ± one standard deviation. The EMG data were normalized to the maximum 
value of the corresponding simulation data for comparison.  
 
Fig. 4: Axial knee joint contact force over the gait cycle. The model’s body weight was 737 N. The vertical line 
indicates toe-off. 
 
Fig. 5: (a) Individual muscle contributions to the axial knee joint contact force over the gait cycle. (b) Muscle force 
component parallel to the longitudinal axis of the tibia developed in those muscles crossing the knee joint. The 
vertical lines indicate toe-off. 
 
Fig. 6: Axial knee joint contact forces over the gait cycle with reduced knee flexion during weight acceptance (thick 
line).  The force developed during normal walking (thin line) is shown for comparison. The vertical line indicates 
toe-off. 
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Figure 6 
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