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Discrete variable methods for

delay-differential equations with

threshold-type delays

Z. Jackiewicz a,∗, B. Zubik-Kowal b

aDepartment of Mathematics, Arizona State University, Tempe, Arizona 85287

bDepartment of Mathematics, Boise State University, 1910 University Drive,

Boise, Idaho 83725

Abstract

We study numerical solution of systems of delay-differential equations in which the
delay function, which depends on the unknown solution, is defined implicitly by the
threshold condition. We study discrete variable numerical methods for these prob-
lems and present error analysis. The global error is composed of the error of solving
the differential systems, the error from the threshold conditions and the errors in
delay arguments. Our theoretical analysis is confirmed by numerical experiments on
threshold problems from the theory of epidemics and from population dynamics.

Key words: Delay-differential systems, threshold conditions, numerical
approximations, error analysis
PACS: 65R20, 45L10, 93C22

1 Introduction

In this paper we propose numerical algorithms for the approximate solution of
threshold problems in population dynamics and epidemics. In such problems
the delay function is not known explicitly and must be determined from ap-
propriate threshold conditions which trigger some events such as, for example,
appropriate levels of food supply or accumulated dosage of infection. In the
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applications considered in this paper these threshold conditions are defined by
integral operators which depend on the history of the solution.

To describe the general setting for such problems denote by yt the function
which depends on past values of y defined by yt(s) = y(t + s), −τ0 ≤ s ≤ 0,
τ0 ≥ 0. Assume that the function

f : [0, T ] × R
q × R

q → R
q

is continuous and consider the state-dependent delay-differential system





y′(t) = f
(
t, y(t), y

(
t − τ(t, yt)

))
, t ∈ [0, T ],

y(t) = g(t), t ∈ [−τ0, 0],
(1.1)

with a given initial fuction g and a threshold-type delay

τ : [0, T ] × C1([−τ0, 0], Rq) → R+

of the form

P
(
t, yt, τ(t, yt)

)
= m. (1.2)

Here, P : [0, T ]×C([−τ0, 0], Rq)×R+ → R is a given operator and R+ = [0,∞).
The equation (1.2) is called threshold condition, and m is a given threshold.
We are not aware of the existence and uniqueness theorems for general problem
(1.1)-(1.2) although some results are known for some of the special cases of
this problem which are studied in [5], [6], [7], [8], and [10].

To compute an approximation to the solution y of (1.1) with τ defined by
(1.2) we consider numerical scheme of the form

yn+1 = yn + hΦh

(
tn, yn, Ψh

(
{yi}i≤n

))
, (1.3)

for n = 0, 1, . . . , N − 1, with the step-size h such that Nh = T , and the
grid-points tn = nh. The initial values yn for n ≤ 0 are known from the
initial condition imposed on [−τ0, 0]. Here, Φh is an increment function which
depends on f and Ψh({yi}i≤n) is an approximation to y(tn − τ(tn, ytn)). This
approximation is computed in the following way.

(a) We first compute an approximation ck(tn) to the value of the delay function
τ(tn, ytn) given implicitly by (1.2) by some iterative procedure

ci+1(tn) = I(ci(tn)), i = 0, 1, . . . ,

for example the bisection method, with a given initial value c0(tn) ∈ [0, τ0].
We stop the iterations when for a given function R(h), such that

lim
h→0

R(h) = 0,
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the difference between two consecutive iterations is less than or equal to R(h),
i.e.,

|ck(tn) − ck−1(tn)| ≤ R(h)

for all n = 1, 2, . . . , N . The approximation to ytn will be computed by a
suitable interpolation formula, compare Section 3.2.

(b) We compute next the approximation Ψh({yi}i≤n) to y(tn−ck(tn)). Assume
that ν ≥ 1 and µ ≤ n are indices such that

tn − ck(tn) ∈ [tµ−ν , tµ],

where, preferably, tn − ck(tn) is located in the middle of this interval. This
approximation is then computed as η(tn − ck(tn)), where η is a polynomial
which interpolates to yµ−i at tµ−i for i = 0, 1, . . . , ν. Alternatively, if

tn − ck(tn) ∈ [tµ−1, tµ],

y(tn − ck(tn)) can be computed by a natural continuous extension already
defined on the interval [tµ−1, tµ]. Note that, for each n = 0, 1, . . . , N − 1, since
τ(tn, ytn) > 0, we have

tn − τ(tn, ytn) < tn

and, even if h > τ(tn, ytn), the value y(tn − τ(tn, ytn)) is approximated by η
based only on yi with i ≤ n.

If the formula (1.3) is based on an implicit Runge-Kutta method, then the
values y(tn + cih − τ(tn + cih, ytn+cih)), with the abscissae ci ∈ [0, 1], need to
be interpolated. In this case, it may happen that cih > τ(tn + cih, ytn+cih).
Then, the interpolating polynomial η needs the value yn+1, which makes the
method (1.3) implicit. However, the polynomial η is not the only reason of the
implicitness of the entire method as the Runge-Kutta method chosen for (1.3)
is already implicit. In Section 4, we apply explicit Euler’s method to problems
from the theory of epidemics and from population dynamics. In this case the
method (1.3) is explicit and the value yn+1 is not used for the polynomial η.

2 Error estimation

Let y(t) be the exact solution to the problem (1.1)-(1.2) and yn be approxi-
mations determined by steps (a)-(b) described in Section 1. Define the global
error at the point tn by en = y(tn) − yn and let ‖ · ‖ be an arbitrary vector
norm in R

q. The following theorem gives an error estimation for ‖en‖.

Theorem 2.1 Suppose that the method (1.3) satisfies the consistency condi-
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tion
∥∥∥∥∥y(tn+1) − y(tn) − hΦh

(
tn, y(tn), Ψh

(
{y(ti)}i≤n

))∥∥∥∥∥ ≤ ChS(h) (2.1)

with a positive constant C and a positive function S(h) such that lim
h→0

S(h)=0.

Moreover, suppose that

∥∥∥∥Φh(t, u1, v1) − Φh(t, u2, v2)

∥∥∥∥ ≤ L1‖u1 − u2‖ + L2‖v1 − v2‖ (2.2)

with constants L1, L2 ≥ 0 and

∥∥∥∥Ψh({y(ti)}i≤n) − Ψh({yi}i≤n)
∥∥∥∥ ≤ L max

{∥∥∥∥y(ti) − yi

∥∥∥∥ : i ≤ n
}

+ s(h) (2.3)

with a positive constant L and a positive function s(h) such that lim
h→0

s(h)=0.

Then

‖en‖ ≤
1

L1 + LL2

(
e(L1+LL2)tn − 1

)(
L2s(h) + CS(h)

)
, (2.4)

n = 0, 1, . . . , N , as h → 0.

Proof: Observe that the term s(h) in (2.3) takes into account errors introduced
by the approximation yi to y(ti). It follows from (2.1) that

y(tn+1) = y(tn) + hΦh

(
tn, y(tn), Ψh

(
{y(ti)}i≤n

))
+ Q(h), (2.5)

with ‖Q(h)‖ ≤ ChS(h). Subtracting (1.3) from (2.5) we obtain

en+1 = en + h

(
Φh

(
tn, y(tn), Ψh

(
{y(ti)}i≤n

))
− Φh

(
tn, yn, Ψh

(
{yi}i≤n

)))

+ Q(h),

which together with (2.2) gives

‖en+1‖ ≤ ‖en‖ + hL1‖en‖ + hL2

∥∥∥∥Ψh

(
{y(ti)}i≤n

)
− Ψh

(
{yi}i≤n

)∥∥∥∥

+ ChS(h).

Application of (2.3) to the third term of the right-hand side of the above
inequality results in

‖en+1‖ ≤ (1 + hL1)‖en‖ + hL2L max
i≤n

‖ei‖ + hL2s(h) + ChS(h)

≤ (1 + hL1 + hL2L) max
i≤n

‖ei‖ + hL2s(h) + ChS(h),

4
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n = 0, 1, . . . , N − 1. Introducing the notation

α = 1 + hL1 + hL2L, β = hL2s(h) + ChS(h), (2.6)

we obtain
‖en+1‖ ≤ α max

i≤n
‖ei‖ + β. (2.7)

By induction with respect to n, (2.7) implies

‖en‖ ≤ β
1 − αn

1 − α
, (2.8)

for all n. increasing Using (2.8) with (2.6) results in

‖en‖ ≤
1

L1 + L2L

((
1 + h(L1 + L2L)

)n

− 1

)(
L2s(h) + CS(h)

)
.

Since (
1 + h(L1 + L2L)

)n

≤ enh(L1+L2L),

the above inequality leads to (2.4). This completes the proof. 2

The error bound (2.4) shows convergence of the method (1.3). The order of the
convergence depends on the functions s(h) and S(h), that is, on the choices
of Φh (integration in time) and Ψh (solving the threshold condition (1.2)). For
example, for Φh(t, y, z) = f(t, y, z) the numerical scheme (1.3) corresponds
to the Euler method composed with the method Ψh described by the steps
(a)-(b) in Section 1. The next theorem shows that, under certain conditions
imposed on f , y and Ψh, the consistency condition (2.1) is satisfied for the
increment function Φh representing Euler’s method.

Theorem 2.2 Suppose that Φh = f satisfies the condition

‖f(t, u, v1) − f(t, u, v2)‖ ≤ L2‖v1 − v2‖ (2.9)

and that the exact solution y : [−τ0, T ] → R
q of (1.1)-(1.2) has its second

derivative bounded on [0, T ]. Let a positive constant C2 satisfies

max
t∈[0,T ]

‖y′′(t)‖ ≤ C2. (2.10)

Moreover, suppose that for each grid-point tn the method Ψh, which performs
the steps (a)-(b), satisfies the condition

∥∥∥∥y
(
tn − τ(tn, ytn)

)
− Ψh

(
{y(ti)}i≤n

)∥∥∥∥ ≤ r(h), (2.11)

with a positive function r(h) such that lim
h→0

r(h) = 0. Then

∥∥∥∥∥y(tn+1) − y(tn) − hΦh

(
tn, y(tn), Ψh

(
{y(ti)}i≤n

))∥∥∥∥∥ ≤ Ch
(
h + r(h)

)
, (2.12)
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with C = max{1
2
C2, L2}.

Proof: For each n the solution y satisfies

y(tn+1) = y(tn) + hf
(
tn, y(tn), y

(
tn − τ(tn, ytn)

))
+

y′′(ξn)

2
h2,

with ξn ∈ (0, T ). Here, y′′(ξn) =
(
y′′

1(ξn), . . . , y
′′
q (ξn)

)T

. Therefore,

y(tn+1) − y(tn) − hΦh

(
tn, y(tn), Ψh

(
{y(ti)}i≤n

))
=

= y(tn+1) − y(tn) − hf
(
tn, y(tn), y

(
tn − τ(tn, ytn)

))
+ hQ(h)

=
y′′(ξn)

2
h2 + hQ(h)

with

Q(h) = f
(
tn, y(tn), y

(
tn − τ(tn, ytn)

))
− f

(
tn, y(tn), Ψh

(
{y(ti)}i≤n

))
.

Since ∥∥∥∥Q(h)

∥∥∥∥ ≤ L2 r(h)

this leads to
∥∥∥∥∥y(tn+1) − y(tn) − hΦh

(
tn, y(tn), Ψh

(
{y(ti)}i≤n

))∥∥∥∥∥ ≤
1

2
C2 h2 + hL2 r(h)

which completes the proof. 2

Theorem 2.2 shows that (2.9)-(2.11) imply the consistency condition (2.1) with
S(h) = h + r(h). The conditions (2.9)-(2.10) depend on the function f and
the solution y. The condition (2.11) and the function r(h) are investigated in
the next section.

3 Errors from threshold conditions

3.1 Consistency condition

In this subsection we will show that the property (2.11) is satisfied for the
threshold condition (1.2) defined by the integral operator of the form

P (t, yt, τ) =
∫ 0

−τ
p
(
yt(s)

)
ds, (3.1)

6
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where p : R
q → R is a given smooth and positive function and y denotes

the solution to (1.1)-(1.2). We assume that the operator Ψh is defined by an
interpolating polynomial based on the grid-points used for Φh. We do not make
assumptions about the number of grid-points used for Ψh and we denote this
number by l = ν + 1, compare (b) in Section 1.

The values of τ ∈ [0, τ0] are unknown and depend on time t. Let τ(tn, ytn) > 0
satisfies (1.2) at t = tn with the operator P defined by (3.1). To find an ap-
proximation to τ(tn, ytn) we apply a root-finding numerical method combined
with a numerical quadrature for an approximation of the integral in (3.1).

Assume that the chosen quadrature satisfies the relation

J
(
tn, {v(ti)}i≤n, c

)
=
∫ 0

−c
p
(
v(tn + s)

)
ds + Rp(h, tn, c), (3.2)

for any smooth function v : [−τ0, T ] → R
q, n = 1, 2, . . . , N , and c ∈ [0, τ0],

with the remainder Rp(h, tn, c) of the quadrature formula which satisfies the
conditions

∣∣∣Rp(h, tn, c)
∣∣∣ ≤ Rp(h), tn ∈ [0, T ], c ∈ [0, τ0],

lim
h→0

Rp(h) = 0.
(3.3)

The properties (3.2) and (3.3) are guaranteed by smoothness of the functions
p and v.

Denote by cJ(tn), n = 1, 2, . . . , N , the roots of the equations

J
(
tn, {v(ti)}i≤n, cJ(tn)

)
= m, n = 1, 2, . . . , N, (3.4)

and by cj(tn), j = 0, 1, 2, . . . , the successive approximations to cJ(tn) deter-
mined by the root-finding numerical method applied to (3.4). Let r1(h) be a
chosen positive function such that lim

h→0
r1(h) = 0 and let k be determined in

such a way that

|ck(tn) − cJ(tn)| ≤ r1(h), (3.5)

for n = 1, 2, . . . , N .

Let r0(h) be a chosen positive function such that lim
h→0

r0(h) = 0. For r0(h) and

v, the interpolating polynomials un, n = 1, 2, . . . , N , are constructed according
to the following conditions. Each polynomial un is based on l grid points ti and
l values v(ti) with i ≤ n, i.e., un(ti) = v(ti) at l grid points ti chosen arbitrarily
within the constraint of the inequality i ≤ n. The number l is chosen in such
a way that

max
t∈Vn

‖un(t) − v(t)‖ ≤ r0(h), (3.6)

7
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for all n = 1, 2, . . . , N . Here, Vn is an interval which contains the l grid-points
ti and tn − ck(tn) ∈ Vn.

Having the process of composing the quadature with the root-finding method
and with the interpolating polynomials described above, we define the operator
Ψh by

Ψh

(
{vi}i≤n

)
= un

(
tn − ck(tn)

)
, (3.7)

for n = 1, 2, . . . , N , with un based on vi = v(ti) ∈ R
q, where the index i is

such that ti ∈ Vn.

For the case of Φh(t, y, z) = f(t, y, z) (Euler’s method) choosing l = 2 is
enough because it results in Vn = [tj , tj+1], for a certain index j, and since v
represents the exact solution y, by (2.10), we have

max
t∈Vn

‖un(t) − v(t)‖ =
1

2
max
t∈Vn

∣∣∣(t − tj)(t − tj+1)
∣∣∣max

t∈Vn

‖v′′(t)‖ ≤
C2

2
h2.

Therefore, the error of the interpolation is not larger than the error of Euler’s
method and there is no need to choose l > 2. This is confirmed in Section 4,
where we apply the method (1.3) with l = 2 to problems from population
dynamics and theory of epidemics. The order of convergence is presented in
Table 1. All the numerical experiments for Table 1 were performed with l = 2.

We have the following theorem for the operator Ψh needed for the method
(1.3).

Theorem 3.1 Suppose that y is a smooth solution to problem (1.1)-(1.2) with
the operator P defined by (3.1). Suppose that the function p : R

q → R+,
R+ = [0,∞), is smooth and has a finite number of roots. Suppose that the
operator Ψh is constructed with a quadrature which satisfies (3.2)-(3.3), a
root-finding numerical method which satisfies (3.4)-(3.5), and interpolating
polynomials which satisfy (3.6). Then there exists a positive function r(h)
such that lim

h→0
r(h) = 0 and the consistency condition (2.11) is satisfied.

Proof: Let cJ(tn), n = 1, 2, . . . , N , be the roots of the equations (3.4) based
on the values of y(ti) and let ck(tn), n = 1, 2, . . . , N , be their approximations
by the root-finding method which satisfies (3.5).

We first estimate the error |ck(tn) − τ(tn, ytn)|. Since

∫ 0

−τ(tn,ytn)
p
(
y(tn + s)

)
ds = m = J

(
tn, {y(ti)}, cJ(tn)

)
,

8
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it follows from (3.2)-(3.4) that

∣∣∣∣∣

∫ −cJ(tn)

−τ(tn,ytn)
p
(
y(tn + s)

)
ds

∣∣∣∣∣ =
∣∣∣∣∣

∫ 0

−τ(tn,ytn)
p
(
y(tn + s)

)
ds −

∫ 0

−cJ(tn)
p
(
y(tn + s)

)
ds

∣∣∣∣∣

=

∣∣∣∣∣J
(
tn, {y(ti)}, cJ(tn)

)
−
∫ 0

−cJ (tn)
p
(
y(tn + s)

)
ds

∣∣∣∣∣ ≤ Rp(h).

This inequality and the relations (3.3) imply that

lim
h→0



∫ −cJ (tn)

−τ(tn,ytn)
p
(
y(tn + s)

)
ds


 = 0 (3.8)

uniformly with respect to tn ∈ [0, T ]. Since the function p is smooth and
positive, the relation (3.8) implies the existence of a positive function r2(h)
such that

|cJ(tn) − τ(tn, ytn)| ≤ r2(h) and lim
h→0

r2(h) = 0. (3.9)

From (3.5) and (3.9) we have

∣∣∣ck(tn) − τ(tn, ytn)
∣∣∣ ≤

∣∣∣ck(tn) − cJ(tn)
∣∣∣+

∣∣∣cJ(tn) − τ(tn, ytn)
∣∣∣

≤ r1(h) + r2(h).
(3.10)

It follows from (3.10) and (3.6) that

∥∥∥∥y
(
tn − τ(tn, ytn)

)
− Ψ

(
{y(ti)}i≤n

)∥∥∥∥

≤

∥∥∥∥y
(
tn − τ(tn, ytn)

)
− y

(
tn − ck(tn)

)∥∥∥∥

+

∥∥∥∥y
(
tn − ck(tn)

)
− Ψh

(
{y(ti)}i≤n

)∥∥∥∥

≤ max
s∈[−τ0,T ]

‖y′(s)‖
(
r1(h) + r2(h)

)
+ r0(h),

which proves (2.11) with r(h) defined by

r(h) = max
s∈[−τ0,T ]

‖y′(s)‖
(
r1(h) + r2(h)

)
+ r0(h).

This completes the proof. 2

Theorem 3.1 gives sufficient conditions for (2.11). The function r(h) describes

how good the approximations Ψh

(
{yi}i≤n

)
are for the unknown values y

(
tn −

τ(tn, ytn)
)

and it depends on three components:

9
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(1) r0(h) dictated by the interpolation procedure needed for computing the
polinomial un,

(2) r1(h) dictated by the iteration process needed for computing the root
ck(tn),

(3) r2(h) dictated by the quadrature needed for computing the integral in
(3.1).

All of these components can satisfy

ri(h) ≤ Khp, i = 0, 1, 2,

with a positive constant K and p ≥ 1. This can be achieved by choosing
an appropriate number l of grid-points for un in case i = 0, an appropriate
number of iterations k in case i = 1, and an approriate high order quadrature
in case i = 2.

3.2 Errors in delay arguments

The next theorem shows that the operator Ψh defined by (3.7) satisfies the
property (2.3).

Theorem 3.2 Suppose that the assumptions of Theorem 3.1 are satisfied.
Moreover, assume that the composite function p ◦ y is bounded from below
by a constant M0 > 0, i.e.,

min
s∈[−τ0,T ]

∣∣∣∣p
(
y(s)

)∣∣∣∣ ≥ M0. (3.11)

Let Li be the weight functions of the Lagrange interpolating polynomials un

based on the l grid points. Let L be a Lipschitz constant for all the weight
functions Li over the interval [−τ0, T ] and let M be their maximum value, i.e.,
the Lebesgue constant. Then there exist a positive constant L and a positive
function s(h), which satisfy (2.3) and such that lim

h→0
s(h) = 0.

Proof: Let ck(tn) be the approximation to the value τ(tn, ytn) obtained by the
root-finding method described in Section 3 applied to the approximation of
the threshold condition (1.2) by the quadrature formula based on the values
y(ti), i ≤ n. Similarly, let ck(tn) be obtained by the same process but based on
the approximate values yi, i ≤ n. Let cJ(tn) and cJ(tn) be the corresponding
roots of the equations (3.4) based on y(ti) and yi, respectively.

10
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We will first show that there exist a positive constant B and a positive function
b(h) such that lim

h→0
b(h) = 0 and

∣∣∣ck(tn) − ck(tn)
∣∣∣ ≤ B max

i≤n

∥∥∥y(ti) − yi

∥∥∥+ b(h), (3.12)

for n = 1, 2, . . . , N . Since, for all n = 1, 2, . . . , N , J(tn, {yi}i≤n, cJ(tn)) and
J(tn, {y(ti)}i≤n, cJ(tn)) are linear combinations of the same number of values
from the sets {yi}i≤n and {y(ti)}i≤n, respectively, with the same constant

coefficients, there exists a positive constant M̃ such that

∣∣∣∣J
(
tn, {yi}i≤n, cJ(tn)

)
− J

(
tn, {y(ti)}i≤n, cJ(tn)

)∣∣∣∣

≤ M̃ max
i≤n

∥∥∥yi − y(ti)
∥∥∥,

(3.13)

for n = 1, 2, . . . , N . Moreover, for (3.4)

∣∣∣∣J
(
tn, {yi}i≤n, cJ(tn)

)
− J

(
tn, {y(ti)}i≤n, cJ(tn)

)∣∣∣∣

≥ −

∣∣∣∣∣m −
∫ 0

−cJ (tn)
p
(
y(tn + s)

)
ds +

∫ 0

−cJ (tn)
p
(
y(tn + s)

)
ds

− J
(
tn, {y(ti)}i≤n, cJ(tn)

)∣∣∣∣∣+
∣∣∣∣∣

∫ −cJ (tn)

−cJ(tn)
p
(
y(tn + s)

)
ds

∣∣∣∣∣

= −

∣∣∣∣∣Rp

(
tn, h, cJ(tn)

)
+ Rp

(
tn, h, cJ(tn)

)∣∣∣∣∣+
∣∣∣∣∣

∫ −cJ (tn)

−cJ (tn)
p
(
y(tn + s)

)
ds

∣∣∣∣∣.

This together with (3.11) and (3.13) leads to

M0

∣∣∣∣cJ(tn) − cJ(tn)

∣∣∣∣ ≤

∣∣∣∣∣

∫ −cJ (tn)

−cJ(tn)
p
(
y(tn + s)

)
ds

∣∣∣∣∣

≤

∣∣∣∣Rp

(
tn, h, cJ(tn)

)
+ Rp

(
tn, h, cJ(tn)

)∣∣∣∣ + M̃ max
i≤n

∥∥∥yi − y(ti)
∥∥∥,

which by (3.3) gives

∣∣∣cJ(tn) − cJ(tn)
∣∣∣ ≤

M̃

M0
max
i≤n

∥∥∥yi − y(ti)
∥∥∥+

2

M0
Rp(h).
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By the inequality (3.5) we obtain

∣∣∣ck(tn) − ck(tn)
∣∣∣ ≤

∣∣∣ck(tn) − cJ(tn)
∣∣∣

+
∣∣∣cJ(tn) − cJ(tn)

∣∣∣+
∣∣∣cJ(tn) − ck(tn)

∣∣∣

≤
M̃

M0
max
i≤n

∥∥∥yi − y(ti)
∥∥∥+

2

M0
Rp(h) + 2r1(h),

(3.14)

which shows (3.12). Since Ψh is based on interpolation, by (3.14) we have

∥∥∥∥Ψh

(
{y(ti)}i≤n

)
− Ψh

(
{yi}i≤n

)∥∥∥∥

=
∥∥∥∥
∑

i≤n

y(ti)Li

(
tn − ck(tn)

)
−
∑

i≤n

yiLi

(
tn − ck(tn)

)∥∥∥∥

≤

∥∥∥∥
∑

i≤n

y(ti)Li

(
tn − ck(tn)

)
−
∑

i≤n

y(ti)Li

(
tn − ck(tn)

)∥∥∥∥

+
∥∥∥∥
∑

i≤n

y(ti)Li

(
tn − ck(tn)

)
−
∑

i≤n

yiLi

(
tn − ck(tn)

)∥∥∥∥

≤
∑

i≤n

L‖y(ti)‖|ck(tn) − ck(tn)| + Ml max
i≤n

‖y(ti) − yi‖

≤ lL max
s∈[−τ0,T ]

∥∥∥∥y(s)
∥∥∥∥


 M̃

M0

max
i≤n

∥∥∥∥yi − y(ti)
∥∥∥∥ +

2

M0

Rp(h) + 2r1(h)




+ Ml max
i≤n

‖y(ti) − yi‖.

This shows (2.3) with L and s(h) defined by

L =
lLM̃

M0
max

s∈[−τ0,T ]

∥∥∥∥y(s)

∥∥∥∥+ lM

and

s(h) = lL max
s∈[−τ0,T ]

∥∥∥∥y(s)
∥∥∥∥
(

2

M0

Rp(h) + 2r1(h)
)
,

which completes the proof. 2

Note that, although the assumption (3.11) is significantly used in the proof of
Theorem 3.2, it is not used in the proof of Theorem 3.1.

In Section 4, we apply the method (1.3) to problems from population dynamics
and theory of epidemics. For these applications the operator Ψh is based on the
composite trapezoidal rule. Note that, for the integral operator (3.1) computed
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by the composite trapezoidal rule, the inequality (3.13) is satisfied with a
constant M̃ = τ0.

By Theorems 2.1, 2.2, 3.1, and 3.2 we have the following corollary.

Corollary 3.3 Suppose that the function f satisfies the Lipschitz condition

∥∥∥∥f(t, u1, v1) − f(t, u2, v2)
∥∥∥∥ ≤ L1‖u1 − u2‖ + L2‖v1 − v2‖.

Moreover, suppose that the condition (2.10) and the assumptions of Theorem
3.2 are satisfied. Then the error bound (2.4) holds with s(h) given in Theorem
3.2 and with S(h) = h + r(h), where r(h) is given in Theorem 3.1.

Corollary 3.3 shows that for the choice of Φh(t, y, z) = f(t, y, z) (Euler’s
method) the composite method (1.3) has order 1 if the iterative scheme and
the quadrature applied for the threshold condition (1.2) with (3.1) do not in-
troduce errors larger than of order 1. This is confirmed by Table 1, which is
introduced and described in Section 4.

In the next section we apply the numerical technique described in this paper to
specific examples from population dynamics and epidemics. To summarize, the
numerical algorithm proposed in this paper is based on the following numerical
schemes:

(1) A one-step formula (1.3) with increment function Φh to advance the step
from tn to tn+1. We will use Φh(t, y, z) = f(t, y, z) which corresponds to
the Euler method.

(2) A formula Ψh({yi}i≤n) to compute an approximation to the delayed term

y
(
tn − τ(tn, ytn)

)
which, in general, requires:

(a) A suitable interpolation formula based on the given or already com-
puted values yi, i ≤ n, to construct a continuous interpolant un(s) ≈
ytn(s), −τ0 ≤ s ≤ 0. Our algorithm is based on the Lagrange’a inter-
polation formula.

(b) An iterative procedure to find an approximation ck(tn) to the solution

of the threshold condition P
(
tn, un, τ(tn, un)

)
= m or of its suitable

approximation P̃
(
tn, un, τ(tn, un)

)
= m. The algorithm employed in

this paper is based on the bisection method.
(c) A suitable interpolation formula to find an approximation to the

solution y(tn − ck(tn)). Again this step is based on the Lagrange’a
interpolation formula.
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4 Applications in population dynamics and theory of epidemics

Example 1. Gourley and Kuang [5] study a new predator-prey model, which
is an extension of the model by Aiello and Freedman [1]. The model derived
in [5] can be written in the form





x′(t) =
r

K
x(t)

(
1 − x(t)

)
− y(t)p

(
x(t)

)
,

y′(t) = be
−djτ

(
t,xt

)

y
(
t − τ(t, xt)

)
p
(
x
(
t − τ(t, xt)

))
− dy(t),

x(t) = x0(t), t ∈ [α, 0],

y(t) = y0(t), t ∈ [α, 0],

(4.1)

t ≥ 0, α ≤ 0. Here, x(t) is the population of prey at time t and y(t) the
population of adult predators. The given initial functions x0(t) and y0(t) are
nonnegative and continuous on α ≤ t < 0, and x(0), y(0) > 0. The given
constant r is the specific growth rate of the prey, K is its caring capacity,
and the (given) function p(x) is the adult predators’ functional response. The
parameters b and d are the adult predators’ birth and death rates, respectively.
In this model the delay function τ(t, xt) which depends on the past history
x(s), s ≤ t, of population of prey is determined from the threshold condition

P
(
t, xt, τ(t, xt)

)
:=
∫ t

t−τ(t,xt)
p
(
x(s)

)
ds = m, (4.2)

where m > 0 is a given threshold and p(x) is a given differentiable and strictly
increasing function.

Numerical approximations to the populations of prey x(t) and predators y(t),
and the corresponding unknown delay function τ(t, xt) are plotted in Figure
1. The model parameters are r = 1, K = 1, b = 10, d = 0.5, dj = 1, m = 0.2
and p(x) = x/(1+0.5x). The results were obtained by Euler’s method applied
with h = 0.01 to (4.1) and the composite trapezoidal rule combined with the
method of bisection applied to (4.2). For the composite trapezoidal rule we
applied 100 grid points. We applied the tolerance of 10−3 for the method of
bisection. There were no more than 7 iterations per each step. The time of
integration was 2.03 · 103 sec.

Example 2. Hoppensteadt and Waltman [7] study a model for the spread of
infection. The model is written in the form





S ′(t) = −r(t)I(t)S(t), t ≥ 0,

S(0) = S0,
(4.3)
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Fig. 1. The populations of prey x(t) and predators y(t), and the corresponding delay
function τ(t, xt).

with

I(t) =





I0(t), −σ ≤ t ≤ t0,

I0(t) + S0 − S
(
τ(t, It)

)
, t0 ≤ t ≤ t0 + σ,

S
(
τ(t − σ, It−σ)

)
− S

(
τ(t, It)

)
, t0 + σ ≤ t < ∞

(4.4)

and

I0(t) =





I0(0) − I0(t − σ), 0 ≤ t ≤ σ,

0, σ < t < ∞.

Here, I(t) is the number of infectives and S(t) is the number of susceptibles
at time t ≥ 0 in a certain constant population. The number of infectives I0(t)
for t < 0 is known and satisfies the conditions I0(−σ) = 0 and I0(0) = I0.
Moreover, r(t) > 0 and ρ(t) > 0 are known proportionality functions and
0 < t0 < σ is a unique time which satisfies the threshold condition

∫ t0

0
ρ(s)I0(s)ds = m.

The function τ(t, It) appearing in (4.4) is unknown and determined from the
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threshold condition

P
(
t, It, τ(t, It)

)
:=
∫ t

τ(t,It)
ρ(s)I(s)ds = m. (4.5)

This model was numerically solved before by Hoppenstedat and Jackiewicz [6]
using the differential form of the threshold condition

τ ′(t) =
ρ(t)I(t)

ρ(τ(t))I(τ(t))
, τ(t0) = 0, t ≥ t0, (4.6)

and by Thompson and Shampine [10] where the threshold time was determined
automatically by using an event function of Matlab dde23 solver, see [9], for
delay differential equations. The numerical method presented in this paper
deals directly with integral form of the threshold condition (4.5) by fixed
point iterations.

The approach proposed in this paper is more general than that considered
before in [6] since it does not require that the delay function τ(t) is differen-
tiable. We can observe that the delay function corresponding to Example 1
has sharp gradients and the corresponding equation (4.6) for τ ′(t) would be
stiff.

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

t

 

 
susceptible
infective
τ(t,I

t
)

Fig. 2. Infective I(t) and susceptible S(t) population with the corresponding delay
function τ(t, It).

Example # Example 1 Example 2

h err err

10−1 2.84 · 10−2 4.02 · 10−2

10−2 3.09 · 10−3 2.41 · 10−3

10−3 3.08 · 10−4 2.19 · 10−4

10−4 2.81 · 10−5 1.97 · 10−5

Table 1
Errors for Example 1 and 2 at t = 1.
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Numerical approximations to the infective population I(t), the susceptible

population S(t), and the unknown delay function τ
(
t, It

)
, which solve problem

(4.3)-(4.4) with the given function

I0(t) =





0.4(1 + t), −1 ≤ t ≤ 0,

0.4(1 − t), 0 ≤ t ≤ 1,

0, otherwise,

are plotted in Figure 2. The parameter values used for Figure 2 are: m = 0.1,
σ = 1, S0 = 10, t0 ≈ 0.357403 and the given functions are ρ(t) = exp(−t)

and r(t) = r0

(
1+ sin(5t)

)
with r0 = 0.3. The results were obtained by Eulers’

method applied to (4.3) with the step-size h = 0.1 , the composite trapezoidal
rule applied to the integrals from (4.5), and the method of bisection to find a
numerical approximation to the equation (4.5). For the composite trapezoidal
rule we applied 20 grid points. We applied the tolerance of 10−3 for the method
of bisection. There were no more than 13 iterations per each step. The time
of integration was 0.76 sec.

The order of the convergence is presented in Table 1 for Example 1 and 2.
The errors listed in the table were computed using reference solutions, which
were computed with h = 10−5, the tolerance 10−7 for the method of bisection,
and 1000 grid points for the the composite trapezoidal rule. The errors were
computed with the corresponding parameters h listed in the first column and
with the same tolerance and numbers of grid points as for the reference solu-
tions. Table 1 confirms the order of Euler’s method used for the integration
in time of both problems.

5 Concluding remarks

We investigated numerical errors of discrete numerical methods for the thresh-
old problems which are applied in the theory of epidemics and population dy-
namics. Since the problems include systems of delay differential equations and
threshold conditions which cannot be solved separately, our error bounds have
three components. The first component corresponds with the errors of solving
the delay systems, the second component corresponds with the errors from
the threshold condition and third component corresponds with the errors in
delays. We made numerical experiments for two models: one from the theory
of epidemics and other from population dynamics. Our numerical experiments
with Euler’s method confirm our theoretical estimations.

Future work will address the design of codes for thereshold problems based
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on adaptations of continuous Runge-Kutta methods [2] and general linear
methods in Nordsieck form [3], [4] for ordinary differential equations.

Acknowledgements. The authors wish to express their gratitude to anony-
mouns referees for their helpful comments.
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