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Impact of Hillslope-Scale Organization of
Topography, Soil Moisture, Soil Temperature,

and Vegetation on Modeling Surface
Microwave Radiation Emission

Alejandro N. Flores, Member, IEEE, Valeriy Y. Ivanov, Dara Entekhabi, Senior Member, IEEE, and Rafael L. Bras

Abstract—Microwave radiometry will emerge as an important
tool for global remote sensing of near-surface soil moisture in
the coming decade. In this modeling study, we find that hillslope-
scale topography (tens of meters) influences microwave bright-
ness temperatures in a way that produces bias at coarser scales
(kilometers). The physics underlying soil moisture remote sensing
suggests that the effects of topography on brightness temperature
observations are twofold: 1) the spatial distribution of vegeta-
tion, moisture, and surface and canopy temperature depends on
topography and 2) topography determines the incidence angle and
polarization rotation that the observing sensor makes with the
local land surface. Here, we incorporate the important correla-
tions between factors that affect emission (e.g., moisture, temper-
ature, and vegetation) and topographic slope and aspect. Inputs
to the radiative transfer model are obtained at hillslope scales
from a mass-, energy-, and carbon-balance-resolving ecohydrol-
ogy model. Local incidence and polarization rotation angles are
explicitly computed, with knowledge of the local terrain slope and
aspect as well as the sky position of the sensor. We investigate both
the spatial organization of hillslope-scale brightness temperatures
and the sensitivity of spatially aggregated brightness temperatures
to satellite sky position. For one computational domain considered,
hillslope-scale brightness temperatures vary from approximately
121 to 317 K in the horizontal polarization and from approxi-
mately 117 to 320 K in the vertical polarization. Including hill-
slope-scale heterogeneity in factors effecting emission can change
watershed-aggregated brightness temperature by more than 2 K,
depending on topographic ruggedness. These findings have impli-
cations for soil moisture data assimilation and disaggregation of
brightness temperature observations to hillslope scales.

Index Terms—Ecohydrology, microwave radiometer, observa-
tion bias, radiative transfer, remote sensing, soil moisture, soil
temperature, topography, vegetation.
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I. INTRODUCTION

S PACEBORNE and airborne radiometric sensing is emerg-
ing as the primary tool for observing the hydrologic state

of the Earth’s system. Microwave radiometry is particularly
useful for near-surface soil moisture estimation because the
dielectric constant, and therefore emissivity, of soils varies
significantly with moisture content in the lower microwave
region of the electromagnetic spectrum (i.e., 1–6 GHz) [1]–[5].
L-band microwave radiometry technology is vital to both the
European Space Agency’s Soil Moisture and Ocean Salinity
(SMOS) mission, which is scheduled to launch in 2008 [6], [7],
and the National Aeronautics and Space Administration’s Soil
Moisture Active–Passive (SMAP) mission, which is scheduled
to launch between 2010 and 2013 (http://smap.jpl.nasa.gov/).
For a loamy soil with sparse natural grass cover, a change
in brightness temperature of 10 K in both horizontal and
vertical polarizations is associated approximately with an 8%
and change in volumetric water content at incidence angles θ
ranging from 40◦ to 60◦ [1], [8], [9]. This range of incidence
angles coincides with off-nadir look angles of existing and
planned radiometers [2], [4], [6], [7]. Estimates of near-surface
soil moisture are typically retrieved from observations (in the
form of brightness temperature images) through numerical
inversion of a radiative transfer model (RTM) [6], [7], [10].
Formulation of soil moisture retrieval algorithms requires ap-
proximate inversion of a nonlinear RTM that simulates syn-
thetic brightness temperature observations at the satellite from
known inputs. Inputs to the RTM are typically spatial maps
of near-surface moisture and temperature, along with ancillary
data related to surface vegetation conditions and soil roughness.
The moisture and temperature states input to the RTM are often
derived from physically based land surface models. Microwave
radiometry is also a component critical to the related area of
land surface data assimilation, which employs algorithms to
constrain observations of brightness temperatures to physically
based land surface models. In soil moisture data assimilation,
the RTM serves as the observing system that projects the
modeled states from state to observation space [11], [12].

Previous studies requiring extensive RTM use typically re-
solve the land surface at resolutions coarser than 1 km [2], [5],
[10], [13], [14]. However, it has been well established that the
spatial distribution of inputs to existing RTMs, specifically soil
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moisture, vary significantly over a range of spatial scales [15]–
[17]. Variation at the hillslope scale (tens of meters) is associ-
ated with spatial variability of topography, soil, and vegetation
[18]. In these studies, spatial variation in soil moisture and veg-
etation states at hillslope scales has largely been ignored. This
is primarily because models that are capable of resolving mois-
ture and vegetation states at these scales (referred to hereafter
as watershed-scale models) are of intractably high dimension
when considering a spatial domain of sufficient size to develop
soil moisture retrieval algorithms. In addition to influencing
hydrology and vegetation, local topography dictates the local
incidence and polarization rotation angles, to which observed
brightness temperatures are sensitive [1], [8], [9], [19]. The
impact of topography on viewing geometry is increasingly
gaining attention in the remote sensing literature [19]–[23].
In a modeling study using digital elevation models (DEMs),
Kerr et al. [20] find that modeled brightness temperatures in
areas of variable topography can be several kelvins different
than a corresponding flat surface. Talone et al. [21] used a 30-m
DEM and a 100-m land cover map to derive inputs to the SMOS
RTM, in which the DEM is used to incorporate topographic
effects on shadowing and local incidence angles. Further,
Mialon et al. [22] recently discussed these effects in the context
of the SMOS mission and developed a criterion to identify
SMOS brightness temperature pixels in which topographic
effects on incidence angle are likely to result in observation
errors greater than the required 4-K accuracy [3]. The works of
Sandells et al. [23] and Mätzler and Standley [19] are notable
because they include the effects of topographic slope on the
geometry of observation; they did not consider the covariation
between topography and the land surface factors affecting
emission of microwave energy.

This paper aims at demonstrating the effect of topographic
variability, vis-á-vis its relationship to observation geometry
and surface states, in modeling microwave radiation emis-
sion from soils. A topography-dependent spatially distributed
mass-, energy-, and carbon-balance-resolving watershed model
[24]–[28] is used to generate the soil and vegetation states
required as input to an RTM for two semiarid watersheds.
The model includes a dynamic ecology component as well
as full water and energy balance (with radiative exchanges).
The model can hence produce correlations between slope,
aspect, and factors that affect the emission of microwave energy
at the surface, such as soil moisture, soil temperature, and
vegetation biomass. Incidence angle and polarization rotation
are computed at every computational element in the modeling
domain, with knowledge of the slope and aspect as well as the
relative sky position of the synthetic sensor. By allowing the
local incidence angle, polarization rotation, vegetation biomass,
canopy temperature, soil moisture, and soil temperature to vary
spatially at hillslope scales, we demonstrate that topography
significantly affects the spatial distribution of modeled bright-
ness temperature. In a manner similar to the works of Mätzler
and Standley [19] and Sandells et al. [23], and because there
are currently no spaceborne L-band microwave measurements,
this work focuses on quantifying the sensitivity of modeled
microwave brightness temperatures to topographic variation in
a set of synthetic landscapes.

A description of the physical theory underlying modeling
microwave radiation emission from soils follows in Section II.
Section III demonstrates that hillslope-scale heterogeneity sig-
nificantly influences the spatial distribution of predicted bright-
ness temperatures. When aggregated to a spatial scale of 2 km,
the predicted brightness temperature observations exhibit sig-
nificant sensitivity to the relative sky position of the observ-
ing platform. To infer potential effects of topography at the
scale of satellite observation, we compare empirical frequency
distributions of incidence angles derived from 10-m-resolution
DEMs at scales of 10, 25, and 40 km. Implications of this
work for applications involving surface microwave emission
modeling, including brightness temperature disaggregation and
data assimilation, are discussed in Section IV.

II. MODELING MICROWAVE RADIATION EMISSION

A. RTM

Emission of microwave radiation from the Earth’s surface
is modeled through a layered single-scattering RTM [29]. The
predicted observation of brightness temperature (Tbp) observed
by the sensor at polarization p is comprised of a component
from a vegetated fractional area (fc) and a component from the
bare soil (1 − fc), as presented by Crow et al. [10] as follows:

Tbp = fc

{
TSep exp

(
− τp

cos θ

)

+ TC(1 − ωp)
(
1 − exp

(
− τp

cos θ

))

·
(
1 + rp exp

(
− τp

cos θ

))}
+ (1 − fc)TSep (1)

where ep is the emissivity of the soil (dimensionless), τp is
the nadir vegetation opacity (in nepers) at polarization p, θ
is the local incidence angle (in radians), TC and TS are the
canopy and soil temperatures (in kelvins), ωp is the single-
scattering albedo (dimensionless) at polarization p, and rp is the
local reflectivity of the soil (rp = 1 − ep) (dimensionless). The
−τp/ cos θ term in (1) is a theoretical representation for the veg-
etation opacity, taking into account the slant path through the
vegetation layer [1] originally formulated by Kirdiashev et al.
[30] and later derived using effective medium theory [31].

Vegetation opacity τp varies by plant type and is often
modeled as a linear function of vegetation water content Vwc (in
kilograms per square meter) in which the constant of propor-
tionality bp is a vegetation type-dependent opacity coefficient
[32], [33] that depends on polarization, i.e.,

τp = bpVwc. (2)

Because this paper focuses on semiarid landscapes with
natural grasses, vegetation water content is estimated through
an empirical linear relationship between Vwc and leaf area index
(LAI) based on field data suggested by de Rosnay et al. [34] for
semiarid grasses. We have

Vwc = 0.37 LAI + 0.123. (3)
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In the semiarid grassland considered, simulated fractional
vegetation cover is approximately 34%, maximum LAI is
approximately 0.94, and maximum vegetation height is ap-
proximately 0.24 m. Undisturbed natural grasses are primarily
oriented vertically, which could lead to significant polariza-
tion effects. However, several studies have found that these
polarization effects are small in grasslands similar to the ones
considered here [10], [35], [36], and we neglect the polarization
effects on τp, bp, and ωp. However, it should be noted that
Schwank et al. [37] conclude that anisotropic vegetation models
are most appropriate in soil moisture retrieval algorithms be-
cause of the anisotropic nature of real canopies. Importantly, in
a series of field experiments in forested areas Guglielmetti et al.
[38] concluded that significant canopy cover can significantly
attenuate the moisture signal from the ground surface.

The inputs to the RTM, namely, TS , TC , ω, Vwc(LAI), b,
h, and mv , characterize the state of land surface soil and veg-
etation. These states can be evolved by a spatially distributed
physically based watershed model that takes hydrometeorolog-
ical forcings as input. The nature of the watershed model used
in this study are described in more detail later in this paper.

B. Dependence of Observation Geometry on Topography

Both scattering geometry and polarization are affected by
topography [19]. Particularly, previous experimental studies
have found that Tbp is particularly sensitive to θ [1], [8], [9].
At a location R at which the emission of microwave radiation
is modeled, the position of an observing satellite S relative to
the reference location can be expressed as a function of the
azimuth (ζS) and zenith (δS) angles from the reference to the
satellite (Fig. 1). By convention, ζS is defined as the angle
made between the locally horizontal line connecting R with
true north and the locally horizontal line connecting R with
the subsatellite point (the point on the Earth’s surface directly
beneath the satellite), positive clockwise. δS is the angle be-
tween a line originating at R in the −g-direction and the line
connecting R and the satellite S and can be approximated as
the off-nadir look angle of the sensor. For a sloping surface, the
local incidence angle that the observing satellite makes with
the reference location is a function of the local topographic
slope (α∇) and aspect (ζ∇) (Fig. 1). By convention, ζ∇ is
defined as the angle in the locally horizontal plane that the local
direction of steepest descent makes with true north. α∇ is the
local gradient with respect to the horizontal in the direction of
steepest descent. The local incidence angle θ can be computed,
with knowledge of the values of ζS , ζ∇, δS , and α∇, through
the spherical law of cosines [19], i.e.,

cos θ = cos α∇ cos δS + sinα∇ sin δS cos(ζS − ζ∇). (4)

Surface topography also results in a rotation of the linear
polarization by an angle ϕ and, following the work of Mätzler
and Standley [19], is calculated as

sin ϕ = sin(ζS − ζ∇) sin α∇/ sin θ. (5)

The polarization-dependent reflectivity from (1), represented
by rp, is computed as the reflectivity of an equivalent smooth

Fig. 1. Definition of topographic slope α∇ and aspect ζ∇ at location R and
relation to satellite sky position S, as characterized by the azimuth angle to the
satellite ζS and the zenith angle to the satellite δS .

surface rsp extinguished exponentially as a function of the
parameter h, which is linearly related to the root-mean-square
surface height, i.e.,

rp = rsp exp(−h). (6)

The parameter h in (6) is meant to capture the effects of soil
microtopographic variation on the reflectivity. The reflectivity
of the smooth surface rsp is a function of the dielectric constant
of the soil–air–water matrix εeff and the local incidence angle θ.
Following the formulation outlined in [19], the horizontally
polarized reflectivity in the reference frame of the observing
sensor rsh can be determined as a function of the linear polar-
ization rotation angle ϕ, i.e.,

rsh = rsh,l cos2 ϕ + rsv,l sin2 ϕ. (7)

Similarly, the vertically polarized reflectivity in the observing
sensor reference frame rsv can be determined as

rsv = rsv,l cos2 ϕ + rsh,l sin2 ϕ. (8)

In (7) and (8), rsh,l and rsv,l are the horizontally polarized
and vertically polarized smooth surface reflectivity in the local
reference frame, respectively, and are determined through the
Fresnel equations [39]. For p = h, we have

rsh,l =

∣∣∣∣∣
cos θ −

√
εeff − sin2 θ

cos θ +
√

εeff − sin2 θ

∣∣∣∣∣
2

. (9)

For p = v, we have

rsv,l =

∣∣∣∣∣
εeff cos θ −

√
εeff − sin2 θ

εeff cos θ +
√

εeff − sin2 θ

∣∣∣∣∣
2

. (10)

In (9) and (10), εeff is the effective dielectric constant
of the soil–water–air medium. Formulation and validation of
conceptual soil models describing the dielectric behavior of

Authorized licensed use limited to: Boise State University. Downloaded on August 31, 2009 at 15:23 from IEEE Xplore.  Restrictions apply. 



2560 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 8, AUGUST 2009

soils as a function of physical and chemical properties and
degree of wetness have a long history and remain as an active
area of research [40]–[44]. Such models often describe the
behavior of both the real and complex parts of the dielectric
constant and may include the effects of high ion concentra-
tions at low moisture contents associated with clay-rich soils.
These models are desirable insofar as the relationship between
dielectric constant and soil moisture varies by soil type (i.e.,
clay, silt, loam), and they are more generally applicable over
regions with significant heterogeneity in soil characteristics.
However, they introduce additional parameters that often must
be determined through detailed laboratory characterization of
soils (e.g., cation exchange capacity). For the purposes of this
work, we use the following simple frequently used empirical
relationship that describes the effective dielectric constant as a
function of volumetric soil moisture content only [45]:

εeff = 3.03 + 9.3mv + 146m2
v − 76.7m3

v (11)

where mv is the volumetric soil moisture (in cubic meters per
cubic meter). Though empirical, this equation approximates
well the effective dielectric constant for mineral soils [42].

To summarize, (4) and (5) provide the mathematical frame-
work by which the local incidence angle and polarization rota-
tion can, with knowledge of the sky position of the observing
sensor contained in δS and ζS , be computed through terrain
analysis of topographic data.

C. Land Surface Ecohydrology Modeling

The hillslope-scale distributions of mv , TS , TC , and LAI
required as input to the RTM are obtained using the coupled Tri-
angulated Irregular Network (TIN)-based Realtime Integrated
Basin Simulator (tRIBS) [24], [25], and [46] coupled to the
VEGetation Integrated Evolution (VEGGIE) model [26]–[28],
hereafter referred to as tRIBS–VEGGIE. tRIBS–VEGGIE is
a spatially distributed model that resolves mass, energy, and
carbon balance over a watershed at the hillslope scale by
representation of coupled 1) biophysical energy processes (e.g.,
partitioning of input solar radiation in the canopy and soils),
2) biophysical hydrologic processes (partitioning of rainfall
into interception, throughfall, plant water uptake, etc.), and
3) biochemical processes and vegetation phenology. A full
treatment of the tRIBS–VEGGIE model is beyond the scope of
this paper, and the reader is directed to previous studies describ-
ing the development, parameterization, and confirmation of the
tRIBS–VEGGIE framework [24]–[28], [46]. What follows in
this section is a brief description of the soil moisture modeling
component, the vegetation dynamics embodied by the model,
and an overview of the static data required to simulate the near-
surface moisture, temperature, and vegetation variable used as
input to the RTM.

Infiltration of water into the soil is modeled using a 1-D
Richards equation for a sloped surface that allows for lateral
gravitational drainage. The lower boundary condition of the
model is a flux boundary condition, consistent with the as-
sumption of significant depth to the saturated subsurface in
the semiarid environment for which the model is currently

TABLE I
RANGE OF LAND SURFACE STATE INPUTS TO AN RTM FOR

DIFFUSIVE AND FLUVIAL EROSION DOMAINS

parameterized. The Brooks–Corey model [47] is used to char-
acterize the relationship between soil moisture and hydraulic
conductivity and between soil moisture and matric potential.
Slope-parallel hydraulic conductivity is proportional to the
slope-normal hydraulic conductivity by a factor termed the
anisotropy ratio.

The dynamic vegetation component of tRIBS–VEGGIE op-
erates on specified plant functional types (PFTs) [48]. For each
PFT, tRIBS–VEGGIE simulates carbon fluxes by representing
the processes of photosynthesis, autotrophic respiration, stress
induced foliage loss, and tissue turnover. The fluxes that deter-
mine the exchange of CO2 between the atmosphere and the land
surface contribute to the dynamics in the following three carbon
pools modeled within tRIBS–VEGGIE: 1) foliage; 2) sapwood;
and 3) fine roots. Assimilation of CO2 through photosynthesis
is coupled to surface energy and water balance through the
stomatal resistance model, which depends on the budget of
long-wave and solar radiation and site soil moisture throughout
the rooting profile of the PFT. The amount of incoming solar
radiation being received at any time during the day at the land
surface depends on site slope and aspect, as well as on the
solar azimuth angle. In this manner, tRIBS–VEGGIE simulates
the spatial covariation between incident solar radiation and
surface moisture, energy, and plant vigor processes, which
leads to north- and south-facing contrasts in variables such as
surface temperature, canopy temperature, and available energy.
As part of model calibration and confirmation, Ivanov et al. [27]
demonstrate that tRIBS–VEGGIE is capable of reproducing
point-scale observations of vegetation biomass obtained at sev-
eral irregularly spaced times over several growing seasons at
the Sevilleta National Wildlife Refuge.

Hydrologic and vegetation states input to the RTM are
obtained from the spatially distributed simulations thoroughly
presented in [27]. The following variables from [26] were
used as input to the RTM: 1) soil moisture in the top 25 mm
of the soil column (mv); 2) soil temperature (TS); 3) canopy
temperature (TC); and 4) LAI. Vegetation water content (Vwc)
was computed from (3) with the simulated LAI, and the
effective dielectric constant (εeff) was computed from (11)
with the simulated volumetric soil moisture (mv). Values of
the parameters ω, h, and b are taken from [10] for the short
grass landuse cover type. Values of the inputs to the RTM are
summarized in Table I for the two watersheds considered in
this paper.
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Fig. 2. Two catchments used as computational domains for tRIBS–VEGGIE and generated by a physically based landscape evolution model with (a) slope-
dependent diffusive erosion resulting in landscape less dissected by channels with longer hillslopes and shallower slopes (average and standard deviation in slope
is 0.231 and 0.103 m/m, respectively) and (b) overland flow-dependent fluvial erosion resulting in more channel dissection of the landscape, shorter hillslopes,
and higher slopes (average and standard deviation in slope is 0.500 and 0.192 m/m, respectively). Black circles represent the channel network and are proportional
in size to upstream contributing area (in square kilometers). Black lines are elevation contours and are drawn at 10-m intervals in the diffusion domain and 20-m
intervals in the fluvial domain.

Inputs to the tRIBS–VEGGIE model correspond to the fol-
lowing four categories of data: 1) hourly hydrometeorological
forcings; 2) soil hydraulic and thermal properties; 3) vege-
tation parameters; and 4) a static elevation field represent-
ing watershed topography. Hydrometeorological forcings for
tRIBS–VEGGIE include hourly 1) precipitation; 2) sky frac-
tional cover or incoming solar radiation; 3) air temperature;
4) dew temperature; and 5) wind speed. In this study, hydrom-
eteorological forcings under which the moisture and vegetation
state are evolved by tRIBS–VEGGIE were generated by a
stochastic weather generator [28]. Soil hydraulic and thermal
parameters are consistent with those common to many land
surface models (e.g., [49]–[53]) and available in published
soil databases such as the STATSGO or SSURGO products.
Soil parameters required for water- and energy-balance solu-
tion include the following: 1) saturated hydraulic conductivity;
2) saturation moisture content; 3) residual moisture content;
4) Brooks–Corey parameters; 5) specific volumetric heat ca-
pacity; and 6) thermal conductivity. Here, we assume a loamy
soil that is spatially homogeneous throughout the watersheds
considered. Parameters required by the vegetation development
model coincide with the C4 grass PFT parameterized in other
biophysical–biochemical models (e.g., see [54]–[58]). Water-
shed topography is represented as a network of Voronoi poly-
gons derived from a TIN representation of input static DEMs
such as those from the Shuttle Radar Topography Mission
[59]. The elevation TIN representations of the two watersheds
considered in this paper were constructed using a process-
based landscape development model and are described in the
following section.

D. Topographic Boundary Conditions

Two contrasting elevation fields are used as static topo-
graphic boundary conditions for tRIBS–VEGGIE in this study.
The distinct elevation fields vary in degree of slope variability,

which is important for the study tests, and were generated
by a physically based landscape evolution model that evolves
local elevation as a function of sediment influx and outflux
[60]–[62]. The landscape evolution model has previously been
shown to reproduce equilibrium slope-contributing area scaling
relationships observed in real landscapes [61]. Each domain
is 2 × 2 km and contains 2401 equally spaced computational
facets. The two simulated domains correspond to two different
dominating erosional mechanisms. A diffusive erosion terrain
assumes that slope-dependent processes (e.g., soil creep) are the
primary mechanism of erosion locally, resulting in shallower
slopes, longer hillslopes, and lower topographic relief (range
in watershed elevation) [Fig. 2(a)]. The fluvial erosion terrain
assumes that the primary mechanism of local erosion is shear
stress above some threshold imparted by surface runoff, result-
ing in higher slopes, shorter hillslopes, and greater topographic
relief [Fig. 2(b)]. Ivanov et al. [26], [27] use the diffusive
erosion and fluvial erosion synthetic terrains as the geometric
constructs for several multiyear simulations to develop pat-
terns of soil moisture and vegetation biomass consistent with
field-based observations. The use of these synthetic domains
allows, through tRIBS–VEGGIE, the generation of RTM inputs
that are known to be completely internally consistent and
causally linked. By examining these ideal but realistic cases,
this study seeks to illuminate the sensitivity of microwave
brightness temperature observations, as predicted by a widely
used RTM.

In both of these domains and at each computational cell, the
local incidence angle (θ) is computed with (4), and the polar-
ization rotation (ϕ) is computed with (5), given the local slope
(α∇) and aspect (ζ∇), and assumed values for satellite azimuth
(ζS) and satellite zenith (δS). In the following examples, the
satellite zenith angle is assumed to be equal to 40◦, which is
consistent with conceived soil moisture sensing platforms (e.g.,
[3], [4], [6], [7], [10]). Furthermore, we assume the value of ζS

to be 150◦ from the north (positive clockwise), which is close
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Fig. 3. Flowchart depicting the data required to model the emission of
microwave radiation at hillslope scales using the tRIBS–VEGGIE model.

to the azimuth that would be encountered during the ascending
limb of a soil moisture sensing satellite in a Sun-synchronous
orbit in middle latitudes (e.g., [2]).

In this modeling study, we are interested in investigating
both hillslope-scale characteristics affecting emission of mi-
crowave energy at the surface and in how the organization
of those factors impact the aggregated brightness temperature.
The spatial extent of the domains considered in this study is
significantly smaller than the scale of existing and planned
brightness temperature products (e.g., 2 km versus 40 km,
respectively). Generating significantly larger landscapes with
sufficient topographic detail (e.g., larger than 10 km × 10 km
in spatial extent at spatial resolutions of 90 m or finer) is
computationally difficult. Moreover, it is reasonable to assume
that for the relatively dry and clear conditions considered, the
ecohydrological states simulated by tRIBS–VEGGIE for the
small landscape would exhibit similar spatial organization of
hillslope-scale soil moisture, soil temperature, and vegetation
characteristics affecting microwave energy emission as those
at larger spatial scales. That is, the 2 km × 2 km region is
assumed to be representative of a larger area of relatively homo-
geneous ecohydrologic and topographic variability. Therefore,
our interpretations of radiative transfer modeling results with
the 2 km × 2 km domains are believed qualitatively inferential
for a domain up to the size of one radiometer pixel, provided
that such a domain exhibits relatively consistent topographic,
vegetative, and hydrologic variability. It should also be noted
that we do not mask locations within each domain that may
be obscured from satellite observation by surrounding terrain.
Incorporating these effects on visible sky is a straightforward
extension of this work: emission of microwave radiation is
simply not modeled at computational elements obscured from
view of the satellite by surrounding terrain (e.g., see [19] for
a discussion of one parametric technique for incorporating
these effects). The models and data required for the microwave
emission modeling performed in this study is illustrated through
a flowchart in Fig. 3.

Fig. 4. Empirical frequency distributions of incidence angle (θ), assuming
ζS = 150◦ and δS = 40◦ for fluvial (solid line marked by open squares) and
diffusive (dashed line marked by open circles) erosion domains.

III. RESULTS

A. Spatial Organization of Hillslope-Scale
Brightness Temperatures

The assumed values for ζS and δS are 150◦ and 40◦, respec-
tively. This implies that hillslopes with aspects oriented toward
the observing sensor (south- to southeast-facing hillslopes in
this case) possess the lowest values of θ within the domain.
Conversely, hillslopes with aspects oriented away from the sen-
sor (north- to northwest-facing hillslopes) would possess high-
est values of θ. Instantaneous values of the land surface state
inputs to (1) are obtained from a tRIBS–VEGGIE model sim-
ulation corresponding to a hypothetical midday on August 14
with no rain or clouds. A preliminary sensitivity analysis of
the dependence of brightness temperature on incidence angle
(e.g., similar to that of [1], [8], and [9]) reveals that for 65◦ ≤
θ < 90◦, the brightness temperature decreases rapidly in the
vertical polarization as θ approaches 90◦ for surface conditions
corresponding to mean values in Table I. Moreover, for 65◦ ≤
θ < 90◦, increasing volumetric soil moisture is associated with
increasing Tbv . In the diffusive erosion domain, few hillslopes
exhibit θ ≥ 65◦ (Fig. 4) and Tbv increases monotonically with
θ in this domain for given surface states. In the fluvial erosion
domain, by contrast, a significant number of hillslopes exhibit
θ ≥ 65◦ (Fig. 4). Hence, for the assumed satellite position, the
fluvial domain contains areas with θ such that Tbv decreases
with increasing volumetric soil moisture (i.e., θ ≤ 65◦) and
areas with θ such that Tbv increases with increasing volumetric
soil moisture (i.e., θ ≥ 65◦).

As previously stated, for the two synthetic domains, spatially
varying inputs to the RTM represent instantaneous values of
local TS , TC , Vwc, h, and mv simulated by tRIBS–VEGGIE
during a rain-free day in mid-August. Again, the range of
variability of each state variable input to the radiative transfer
scheme for both domains is given in Table I. The spatial orga-
nization of factors affecting emission impact the spatial distrib-
ution of hillslope-scale brightness temperatures in a significant
and consistent manner (Fig. 5). While the organization of near-
surface soil moisture, soil temperature, canopy temperature,
and vegetation height and abundance (as modulated by the
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Fig. 5. Spatial distribution of brightness temperature, assuming ζS = 150◦ and δS = 40◦ with land surface states at each pixel evolved by the tRIBS–VEGGIE
model for (a) diffusion-dominated terrain in the horizontal polarization, (b) diffusion-dominated terrain in the vertical polarization, (c) fluvial-erosion-dominated
terrain in the horizontal polarization, and (d) fluvial-erosion-dominated terrain in the vertical polarization. Note that brightness temperatures in (c) and (d) are
plotted in geometric intervals due to the large range of variability.

effect of LAI on vegetation optical thickness) all generically
impact the hillslope-scale distribution of modeled brightness
temperatures, in Fig. 5, it is the spatial variability in surface
temperature and the impact of topography on observing geom-
etry that most significantly influence the distribution of bright-
ness temperatures. In the diffusive erosion landscape, the range
of modeled brightness temperatures varies from approximately
224 to 302 K in the horizontal polarization [Fig. 5(a)] and
from approximately 298 to 320 K in the vertical polarization
[Fig. 5(b)]. Computational pixels with west- and north-facing
aspects exhibit lower Tbh relative to south- and east-facing pix-
els. Alternatively, south- and east-facing pixels tend to exhibit
lower Tbv than pixels facing north and west. Similar patterns
to those seen in the diffusive erosion domain can be seen in
the fluvial erosion domain, though the scale of spatial variation
in modeled brightness temperatures is finer than in the diffu-
sive erosion domain and the range of variability in brightness
temperature higher. There exist computational elements within
the fluvial erosion domain that cannot be observed because the
local value of θ would be greater than 90◦, given the assumed
ζS and δS and local values of α∇ and ζ∇. In the fluvial erosion
landscape, the range of modeled brightness temperatures varies
from approximately 121 to 317 K in the horizontal polarization
[Fig. 5(c)] and from approximately 117 to 320 K in the vertical

polarization [Fig. 5(d)]. Similar to the diffusive erosion domain,
north- and west-facing hillslopes in the fluvial erosion domain
are associated with the lowest values of Tbh. Explaining the
spatial distribution of Tbv in the fluvial erosion domain is more
difficult since the distribution of θ within the domain results in
areas where Tbv increases with mv , TS , and TC and areas where
Tbv decreases with increasing mv , TS , and TC . Spatial patterns
of hillslope-scale Tbh and Tbv in both domains are associated
with both topography-controlled variation on incidence angles
and surface states.

Topographic controls on the distribution of incoming solar
radiation lead to tendencies of south- and southeast-facing
hillslopes to exhibit higher soil temperatures, lower moisture,
and lower vegetation biomass (in the Northern Hemisphere).
The tendency for lower moisture and higher soil temperatures
in these areas would lead to higher values of Tbh for given θ.
On the other hand, north- and northwest-facing hillslopes are
exposed to less incident solar radiation and therefore tend to
exhibit lower daytime soil and canopy temperatures, higher
soil moisture, and greater vegetation biomass than south-facing
hillslopes. Therefore, topographic gradients in surface states
act to enhance north–south contrasts in hillslope-scale Tbh

compared with topographic effects on incidence angle alone for
the assumed ζS and δS .
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Given the simulated dry and sparsely vegetated conditions
in this study, the range in modeled brightness temperatures
in both computational domains and polarizations is primarily
attributable to both spatial variability in emissivity and soil
surface temperature. Because the range of variation in Tbp

is substantially greater than the range of variation in TS , we
conclude that significant spatial variation in emissivity exists
within the simulated domains. Despite an almost spatially
uniform dielectric constant associated with the dry simulated
conditions, the spatial variation in emissivity arises because
the reflectivity/emissivity depends on the local incidence an-
gle [(9) and (10)]. Since the fluvial erosion domain exhibits
significantly more variation in brightness temperature than the
diffusive erosion domain, despite relatively similar ranges in
soil temperatures between the two domains, it follows that the
range in emissivity is larger in the fluvial erosion domain. This
suggests that the hillslope-scale organization of emissivity is
sensitive to topographic ruggedness, an important implication
for formulation of soil moisture retrieval algorithms. Several
retrieval algorithms (e.g., [10] and [63]) approximate emissivity
as the brightness temperature normalized by an independently
measured or estimated soil surface temperature (Tbp/TS),
which holds to equality if fc in (1) equals 0. The scattering
terms in the RTM shown in (1) (TC , fc, ωp, and τp) exert greater
influence on Tbp as ep decreases. Hence, although simulated
vegetation biomass is low in this modeling study, vegetation
scattering may degrade the accuracy of an approximate value of
emissivity in areas of the landscape in which incidence angles
are high due to the relative positioning of the hillslope and
observing satellite. The effects of topography on the spatial
distribution of emissivity differ, depending on the wetness con-
ditions. For the relatively dry and spatially invariant conditions
modeled in this study, the principal effect of topography on
the spatial distribution of emissivity is through the dependence
of emissivity on local incidence angle as expressed in (9)
and (10). Similarly, control of local incidence angles is also
the primary topographic effect on emissivity under exception-
ally wet conditions associated with almost uniformly saturated
near-surface soil moisture conditions. However, at intermediate
wetness and particularly during the dry-down phase of the
hydrologic cycle, the hillslope-scale distribution of emissivity is
influenced by topography in the following two ways: 1) by the
spatial distribution of the dielectric constant, which reflects the
physical processes responsible for moisture redistribution in
the subsurface, and 2) by the spatial distribution of local in-
cidence angle as controlled by the distribution of topographic
slope and aspect.

To diagnose the relative impacts of spatial variability in
surface states input to the RTM for the assumed sensor sky
position, we recompute Tbh and Tbv at each computation node
using the locally derived value of θ and ϕ, but with the spatially
averaged values of TS , TC , fc, mv , LAI, and h reported in
Table I. The maps of Tbh and Tbv computed with spatially
averaged RTM inputs are denoted as T sa

bh and T sa
bv , respectively.

Denoting the brightness temperatures in both polarizations
computed from spatially distributed RTM inputs (i.e., those
presented in Fig. 5) as T sv

bh and T sv
bh , respectively, Fig. 6 shows

the impact of hillslope-scale heterogeneity in surface states on

hillslope-scale microwave radiation emission [i.e., (T sv
bh − T sa

bh )
and (T sv

bv − T sa
bv )]. In the diffusive erosion domain, the impact

of spatial heterogeneity in the surface states results in values
of (T sv

bh − T sa
bh ) ranging from approximately −5.4 to +2.3 K

[Fig. 6(a)], while in the fluvial erosion domain, spatial hetero-
geneity leads to values of (T sv

bh − T sa
bh ) ranging from −25.0 to

+5.5 K [Fig. 6(c)]. West- and north-facing pixels exhibit the
lowest values of (T sv

bh − T sa
bh ) in both domains, while in the

fluvial erosion domain, west-facing pixels demonstrate the low-
est values of (T sv

bh − T sa
bh ). Conversely, south- and southeast-

facing pixels demonstrate the highest values of (T sv
bh − T sa

bh )
in both the diffusive and fluvial erosion domains. Values of
(T sv

bv − T sa
bv ) range from approximately −5.7 to +2.4 K in the

diffusive erosion domain [Fig. 6(b)] and approximately −25.5
to +5.5 K in the fluvial erosion domain [Fig. 6(d)]. Pixels with
aspects ranging west to north demonstrate the lowest values of
(T sv

bv − T sa
bv ) in the respective domains. In the fluvial erosion

domain a few north-facing pixels (primarily clustered around
pixels with θ ≥ 90◦) exhibit positive values of (T sv

bv − T sa
bv ),

suggesting that such pixels possess high θ associated with
Tbv that increases with higher mv , and lower TS and TC that
predominate in these areas. It is important to note that for this
particular set of experiments, the spatial patterns in (T sv

bh −
T sa

bh ) and (T sv
bv − T sa

bv ) in Fig. 6 likely arise due mostly to
spatial variation in soil and canopy temperature rather than soil
moisture and optical thickness. For the simulated conditions,
near-surface soil moisture is relatively low, and LAI ranges
from approximately 0.6 to 0.9.

B. Sensitivity of Aggregate Brightness Temperature to
Satellite Sky Position

In Section III-A, we demonstrate that microwave brightness
temperature varies significantly at hillslope scales due to the
effects of topography on both the spatial organization of surface
states as well as angles describing the observational geometry.
Here, we assess the sensitivity of spatially aggregated bright-
ness temperature to satellite azimuth angle (ζS) to diagnose the
potential effects of topography at the sensor.

The spatial distribution of horizontally and vertically polar-
ized microwave brightness temperatures was computed through
the RTM using the previously described instantaneous surface
states evolved by tRIBS–VEGGIE for both computational do-
mains. In this portion of this paper, we assume the satellite
viewing angle (δS) is 40◦ and allow the azimuth angle to the
satellite (ζS) to vary from 1◦ to 360◦, in ζS increments of 1◦.
For each domain, this yields 360 spatial maps of horizontally
and vertically polarized brightness temperature derived from
spatially distributed land surface states, which are denoted
as T sv

bh and T sv
bv , respectively. Each of these hillslope-scale

brightness temperature maps are spatially aggregated, weigh-
ing each pixel according to its contribution to the radiation
received at the sensor. The contribution of a pixel to the bulk
microwave radiation observed at the sensor depends on the
solid angle Ω = A cos θ/r2, where A is the surface area of the
pixel, and r is the distance from the pixel to the radiometer
antenna [19]. Given the relatively small domain size, r does not
vary substantially within the domains considered in this paper
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Fig. 6. Spatial distribution of difference between simulated brightness temperatures using spatially varied and spatially averaged surface states, assuming ζS =
150◦ and δS = 40◦ for (a) diffusive erosion terrain in the horizontal polarization, (b) diffusive erosion terrain in the vertical polarization, (c) fluvial erosion terrain
in the horizontal polarization, and (d) fluvial erosion terrain in the vertical polarization. Note that brightness temperatures in (c) and (d) are plotted in geometric
intervals due to the large range of variability.

and is assumed uniform. Therefore, in ζS increments of 1◦,
the horizontally and vertically polarized microwave brightness
temperature observed at the sensor (T

sv
bh and T

sv
bv , respectively)

due to emission from the visible pixels within the domain can
be computed as

T
sv
bp =

n∑
j=1

T sv
bp,jΩj

n∑
j=1

Ωj

(12)

where n is the number of pixels visible at given satellite
azimuth (ζS).

For comparison purposes, we consider two cases in which
brightness temperatures at the sensor are modeled, assuming
that mv , TS , TC , and LAI are spatially uniform and equal to
the mean value illustrated in Table I for each domain. The
following two cases are meant to capture potentially important
hypothetical microwave emission modeling scenarios within
a consistent land surface modeling environment: 1) a coarse-
scale land surface model augmented with high-resolution (e.g.,
30 m) digital elevation data to encompass topographic effects
on observational geometry and 2) a coarse-scale land surface
model neglecting topographic effects on observational geome-

try. In the first case, topographic effects on θ and ϕ are included
in modeling the dependence of horizontally and vertically
polarized brightness temperature at the sensor on ζS . These
brightness temperatures modeled at the sensor are denoted as
T

sa
bh and T

sa
bv , respectively, and are computed by substituting

T sa
bp for T sv

bp in the summation on the right-hand side of (12).
In the second case, topographic effects are neglected, and we
assume that θ = δS = 40◦. We denote the modeled brightness
temperatures at the sensor, which does not vary with satellite
azimuth (ζS), as T bh,flat and T bv,flat in the latter case.

For the diffusive erosion domain (e.g., rolling hills with
relatively shallow slopes), T

sv
bh, T

sa
bh, T

sv
bv , and T

sa
bv vary in

a sinusoidal fashion with azimuth angle to the satellite (ζS)
[Fig. 7(a) and (b)]. This sinusoidal variation brightness temper-
ature modeled at the sensor with ζS arises because the assumed
value of δS(40◦) is greater than the maximum slope in the
domain. For any value of ζS , this leads to a distribution of θ
within the diffusive erosion domain that leads to the inclusion
of every computational node in aggregation of the pixel-scale
brightness temperatures. This contrasts with the results from the
fluvial erosion landscape (e.g., rugged hills with relatively steep
slopes), which exhibits a more variable relationship between
aggregated brightness temperatures and ζS [Fig. 7(c) and (d)].
Because the value of δS equal to 40◦ is less than the maximum
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Fig. 7. Spatial mean values of brightness temperatures as a function of
satellite azimuth angle for (a) diffusion-dominated terrain in the horizon-
tal polarization, (b) diffusion-dominated terrain in the vertical polarization,
(c) fluvial-erosion-dominated terrain in the horizontal polarization, and
(d) fluvial-erosion-dominated terrain in the vertical polarization. The gray
dashed–dotted line represents T

sv
bh and T

sv
bv , the solid black line represents T

sa
bh

and T
sa
bv , and the black dashed line represents T bh,flat and T bv,flat.

slope in the fluvial erosion domain, groups of pixels depending
on ζS will exhibit θ greater than or equal to the upper 90◦ limit.
At any value of ζS , those pixels with θ ≥ 90◦ are not included
in aggregation of pixel-scale brightness temperatures because
they cannot be observed by the sensor.

Another important contrast between the diffusive and fluvial
erosion terrains lies in the amplitude of variability in aggregated
brightness temperatures with ζS . In the horizontal polarization,
T

sv
bh varies from a low of about 283 K at ζS of approximately

40◦ to a maximum of approximately 288 K at approximately ζS

equal to 220◦, which is a range of 5 K in the diffusive erosion
landscape [Fig. 7(a)]. In the fluvial erosion domain, T

sv
bh ranges

from a low of around 284 K at ζS equal to approximately 40◦ to
a maximum of approximately 292 K at ζS equal to 180◦, which
gives an amplitude of about 8 K for conditions of spatially vary-
ing surface states [Fig. 7(c)]. In comparison, the corresponding
amplitude of variation T

sa
bh is approximately 5 K [Fig. 7(c)]. The

impact of spatial heterogeneity in surface states, as illustrated in
the more rugged domain by the difference between T

sv
bh and T

sa
bh

[Fig. 7(c)] is close to the sensitivity of the radiometer for many
values of ζS and greater than the sensitivity of many operational
and planned microwave radiometers at a few particular values
of ζS [3], [4].

The T
sv
bv in the diffusive erosion landscape exhibits a max-

imum of about 312 K at ζS equal to approximately 40◦ and
a minimum slightly higher than 309.5 K at ζS equal to about
220◦, corresponding to a range in aggregated T

sv
bv of approx-

imately 2.5 K [Fig. 7(b)]. By comparison, T
sv
bv in the fluvial

erosion domain exhibits a range of approximately 3 K (slightly
greater than the radiometer sensitivity), with an approximate
minimum of 292 K at ζS near 330◦ and an approximate maxi-
mum of 295 K at near 150◦ [Fig. 7(d)].

Fig. 8. (T
sv
bp − T

sa
bp) as a function of satellite azimuth angle (ζS) for

(a) diffusion-dominated terrain in the horizontal polarization, (b) diffusion-
dominated terrain in the vertical polarization, (c) fluvial-erosion-dominated
terrain in the horizontal polarization, and (d) fluvial-erosion-dominated terrain
in the vertical polarization.

Comparing the modeled brightness temperatures at the sen-
sor that include topographic effects on incidence angle and
polarization rotation (T

sv
bh and T

sa
bh) to the modeled brightness

temperatures that neglect topographic effects on incidence an-
gle and polarization rotation, T bh,flat is approximately 285.5 K
in the rolling topographic domain [Fig. 7(a)] and 282.5 K in
the rugged topographic domain [Fig. 7(c)]. In the diffusive
domain, the value of T bh,flat is approximately the midpoint of
variation in T

sv
bh and T

sa
bh with ζS [Fig. 7(a)], while T bh,flat is

at least 1.5 K less than the minimum values of T
sv
bh and T

sa
bh

in the fluvial domain [Fig. 7(c)]. In the vertical polarization,
T bv,flat is more than 1 K higher than the maximum values
of T

sv
bv and T

sa
bv in the diffusive domain [Fig. 7(b)] and at

least 15 K higher than the maximum value of T
sv
bv in the

fluvial domain [Fig. 7(d)]. Fig. 7 depicts the following two
important findings of this study: 1) the difference between
T

sv
bp and T

sa
bp demonstrates the role of covariation in the land

surface factors affecting microwave emission at hillslope scales
in the modeled brightness temperature at the sensor and 2) the
difference between T bp,flat and T

sa
bp illustrates the impact of

hillslope-scale topography on modeled brightness temperature
at the sensor vis-á-vis its influence on observational geometry.

The difference in modeled brightness temperatures ob-
served at the sensor (T

sv
bh − T

sa
bh and T

sv
bv − T

sa
bv ) as a func-

tion of ζS is shown more clearly in Fig. 8, which illustrates
the impact of hillslope-scale organization in factors affecting
microwave energy emission at the observing sensor. In general,
the fluvial domain [Fig. 7(c) and (d)] is more sensitive to
hillslope-scale soil moisture, soil temperature, and vegetation
variation than is the diffusive domain [Fig. 7(a) and (b)]. At
ζS near 330◦, T

sv
bh is approximately 0.3 K lower than T

sa
bh

in the topographically smoother terrain [Fig. 8(a)], and T
sv
bh

is approximately 1.5 K lower than aggregated T
sa
bh in the
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more topographically rough terrain [Fig. 8(c)]. Conversely,
when the satellite is situated to the south of the landscape
(ζS near 150◦), T

sv
bh is warmer than T

sa
bh: approximately 0.3

and 2.0 K in the topographically smoother [Fig. 8(a)] and
more rugged [Fig. 8(c)] domains, respectively. The ζS cor-
responding to the minimum and maximum values of (T

sv
bh −

T
sa
bh) are accounted for by the hillslope-scale organization

and correlation of soil moisture, soil temperature, and vege-
tation biomass. By contrast, T

sv
bv differs from T

sa
bv by at most

about 0.25 K in the topographically smoother domain. The
value of (T

sv
bv − T

sa
bv) is a maximum when at ζS near 130◦

and a minimum at ζS near 300◦. Meanwhile, T
sv
bv is up to

2 K greater that and nearly 1.5 K lower than T
sa
bv in the more

topographically rugged domain [Fig. 8(d)]. The nonsymmetry
in Fig. 8(d) about 0 K and change of phase with respect to
Fig. 8(b) is due to the fact that Tbv exhibits nonmonotonic
dependence on θ when θ is greater than approximately 65◦.

C. Effects of Hillslope-Scale Heterogeneity at the Scale of
Planned and Existing Sensors

The influence of hillslope-scale topography on local in-
cidence angle over real terrain is also studied. The case
considered is a 43 km × 59 km area within north-central
New Mexico, which contains the Sevilleta National Wildlife
Refuge and Long-Term Ecological Research station. The
DEM was obtained from the Sevilleta Spatial Database (see
http://sevilleta.unm.edu/data/archive/gis/) derived from inter-
ferometric synthetic aperture radar at a resolution of 10 m.
Elevation within the area ranges from 1403 to 2802 m mean
sea level.

Local incidence angle (θ) is computed through (4) at every
DEM cell within imposed 10, 25, and 40 km windows meant
to represent the size of a single radiometer pixel based on
the topographic slope (α∇) and aspect (ζ∇) at each DEM cell
and assuming ζS = 150◦ and δS = 40◦. This is a simplifying
assumption, which could be relaxed by computing ζS and δS at
each DEM pixel, knowing the location of the subsatellite point
on the Earth’s surface and the orbital altitude of the sensor. We
then compute the empirical histograms of local incidence angle
within each of the three area aggregations.

The empirical histograms shown in Fig. 9 illustrate that
for each area aggregation, both slope and aspect control the
distribution of incidence angle. The influence of aspect on the
histograms is reflected on frequency peaks in Fig. 8. Undoubt-
edly, the fact that there are four peaks in the histogram of θ
arises because aspect angle (cardinal direction of maximum
gradient) can take only eight values on a rectangular grid. How-
ever, the presence of a coherent topographic structure in any
study domain (such as the north–south-oriented ridges present
in the study areas) will lead to distinct ranges of incidence
angles that are encountered more frequently, irrespective of the
terrain model (i.e., regular grid spacing versus irregular mesh).
The frequency at which particular ranges of incidence angles
are encountered within the area aggregation does not change
substantially with increasing spatial aggregation (Fig. 9). The
fact that the histograms of incidence angles seen in Fig. 9
do not change substantially as the domain size is increased

Fig. 9. Empirical frequency distributions of local incidence angles computed
from a 10-m digital elevation model for square domains of size 10 km (solid
line marked by open diamonds), 25 km (dotted line marked by open squares),
and 40 km (dashed line marked by open circles), assuming a satellite azimuth
angle of 150◦ and a zenith angle of 40◦.

suggests that the results of the synthetic experiments presented
in this paper are likely qualitatively informative for footprint
scales of planned and existing satellite radiometers. Together,
Figs. 7–9 suggest that the magnitude of the brightness temper-
ature sensitivity to satellite viewing position, however, is likely
a function of both the overall relief (difference in maximum
and minimum elevation), as well as the topographic ruggedness
(distribution of slopes and hillslope lengths) within the satellite
footprint.

IV. IMPLICATIONS AND CONCLUSION

In summary, on an individual hillslope, topography affects
the amount of solar radiation received, therefore impacting
local soil moisture conditions, temperature conditions, and
dominant vegetation. Moreover, the topographic patterns in
soil moisture and incoming solar radiation induce correlated
patterns in vegetation biomass, water content, and height [26]–
[28], which enhances topographic contrasts in the surface states
that control emission of microwave radiation. Hillslope-scale
topography also controls the incidence angle and polarization
rotation required to capture topographic effects in modeling
the microwave brightness temperature at the sensor. Significant
variation in modeled hillslope-scale brightness temperatures
is a result of variation in the following parameters: 1) soil
moisture and temperature; 2) vegetation water content, height,
and temperature; and 3) local incidence angle and polarization
rotation associated with topography. At the sensor, modeled
brightness temperatures are sensitive to the satellite azimuth
angle and zenith angle because the histogram of hillslope-
scale incidence angles reflects both the distribution of slopes
and aspects within the observation area and the location of
the satellite with respect to the observation area at the time
of observation. The magnitude of this sensitivity is a func-
tion primarily of the degree of topographic ruggedness (or
smoothness). For the synthetic domains in which we simulate
brightness temperature, the fluvial erosion domain (e.g., rugged
terrain with relatively steep slopes) exhibits more variability in
both brightness temperatures modeled at hillslope scales and at
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the sensor because shorter hillslopes and higher slope angles
result in both small-scale variability in surface states and a
wide range of local incidence angles. Spatial heterogeneity in
the surface states input to the RTM considerably affects the
spatial distribution of hillslope-scale brightness temperatures.
Further, as Fig. 8 depicts, the impact of spatially heterogeneous
surface states on modeled brightness temperatures at the sensor
become progressively more pronounced as the terrain becomes
steeper. In general, if the satellite zenith angle (δS) is less than
the maximum slope angle of the area being observed, those
pixels with slope angles (α∇) greater than δS and slope aspects
(ζ∇) coaligned with ζS may not contribute to the observation
because they possess θ ≥ 90◦. This impact can be seen in the
dependence of T

sv
bh and T

sv
bv on ζS in the fluvial erosion land-

scape [Fig. 7(c) and (d)] and reflects the nonsymmetric nature
of spatial variability in surface states with topography. For
example, T

sv
bh is slightly more than 2 K greater than aggregate

T
sa
bh at ζS approximately equal to 150◦ in the fluvial erosion

setting, even with relatively dry conditions and little vegetation.
At this ζS (with the satellite viewing the landscape from the
southeast), south- and east-facing hillslopes with low mv , high
TS , and high TC would tend to enhance brightness temperature,
while many north-facing hillslopes with high mv , low TS , and
low TC do not contribute to the predicted observation because
they possess unfeasibly high values of θ. In general, when the
value of ζS is such that the satellite is south (north) of the
domain, (12) dictates that the brightness temperature modeled
at the sensor (T

sv
bh and T

sv
bv ) will preferentially weight warmer

(cooler) pixels because those pixels also possess lower θ.
This implies that when modeling the microwave observation
at the sensor, variation in the land surface state associated with
hillslope-scale topography is progressively more important as
the terrain modeled becomes steeper. This work is of poten-
tial importance for applications that require modeling surface
microwave emission in areas of nonnegligible topographic
variation. In particular, we discuss this work in the context of
understanding how topography may lead to substantial error in
retrieved soil moisture, disaggregation of radiometer products
to hillslope scales, and assimilation of radiometer data into
hydrologic models in topographically variable terrain.

As of now, there exist no spaceborne radiometer data with
which to validate the findings of this work. A substantial
body of work exists in formulation and validation of retrieval
algorithms based on numerical inversion of (1) using simulated,
airborne, or tower brightness temperature observations together
with in situ soil moisture measurements (e.g., [2], [6], [7],
and [64]). These works are confined, however, to relatively
flat terrain, and in some cases, substantial error exists between
retrieved and measured values of soil moisture. This paper
attempts to discern, to the extent possible in a modeling frame-
work without spaceborne L-band data for validation purposes,
the amount of error at the sensor that can potentially be at-
tributed to factors associated with topographic variation that are
commonly neglected in emission modeling. The potential for
large errors in retrieval algorithms in topographically variable
terrain has been acknowledged in the design of the SMOS
mission by Mialon et al. [22]. They outline a technique to
flag SMOS pixels in which incidence angle effects associated

with topography are sufficiently severe to render the retrieved
soil moisture as either suspect (termed by the authors moderate
topography) or unreliable (termed by the authors strong topog-
raphy) by fitting a log-polynomial model to the semivariogram
of DEMs. Together with an RTM, they use a single fitting
parameter computed from the DEM to identify SMOS pixels in
which the retrieval error due to topographic effects on incidence
angle is likely to be near or greater than the required 4%
accuracy of the SMOS satellite. Introducing aspect to their
technique may better refine the location of pixels flagged, par-
ticularly in areas with spatially coherent topographic structures
(e.g., the Alps and Pyrenees). In a study of synthetic landscapes,
Sandells et al. [23] found that potential soil moisture retrieval
errors using the algorithm outlined in [64] due to topographic
effects on incidence angles may be small for relatively simple
topographic geometries. Although they did not include aspect
explicitly in their analysis of synthetic landscapes, they did note
that portions of the landscape sloping away from the sensor are
likely to introduce larger errors than portions of the landscape
with identical ground slope but sloping toward the sensor. The
potential impact of topographic ruggedness on approximating
emissivity as Tbp/TS mentioned above merits further investiga-
tion for formulating soil moisture retrieval algorithms in areas
of substantial topographic variability. Variation in observed
brightness temperature with satellite azimuth angle at coarse
spatial scales, while potentially significant, can be dampened
by normalizing with an accurate estimate or observation of the
average soil temperature at the same scale. In sparsely vege-
tated regions with substantial topographic slopes, however, the
nearly linear relationship between emissivity and Tbp/TS can
break down in areas where emissivity is low (because of high
incidence angles). Errors in the approximate value of emissivity
could be significant and will depend on the relative proportion
of steep hillslopes within the landscape being observed. Until
spaceborne L-band data become available, uncertainties in the
degree to which topographic controls on viewing geometry
and factors affecting emission from the surface contribute to
error in retrieved moisture from actual brightness temperature
measurements will remain an active area of research.

Disaggregation of soil moisture patterns retrieved from
brightness temperature observations is an active area of re-
search [65], [66]. Often, these disaggregation methods seek to
provide a spatial distribution of soil moisture at sufficiently high
resolution to initialize watershed hydrology models. Several
of these efforts have posed disaggregation as a geostatistical
interpolation based on ancillary data such as soils, vegetation,
and topography [35], [66]–[68]. Given that the range of vari-
ation in modeled brightness temperature is finite and varies
with incidence angle, our study suggests that histograms of
incidence angle and polarization rotation derived from DEM
analysis may be useful constrains to impose on these disaggre-
gation frameworks. By bracketing the range of brightness tem-
perature variation for a given observation, ancillary data such
as soils maps, maps of normalized difference vegetation index
or other temperature-dependent maps cab be used to narrow
the hillslope-scale feasible range of soil moisture variability. A
series of local optimization problems can then be solved to find
the spatial distribution of soil moisture that satisfies these local
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constraints imposed by analysis of DEMs and ancillary data
while preserving the brightness temperature observed at the
sensor. The forthcoming L-band SMOS satellite [3] represents
an innovative approach to microwave soil moisture observa-
tion that may advance the ability to downscale brightness
observations to hillslope scales. It incorporates a multiangular
viewing concept that observes the brightness temperature of a
particular location at two polarizations (vertical and horizontal)
and viewing angles that range from 0◦ to 55◦ off-nadir. A
consequence of this sensor configuration is that the spatial
resolution of the brightness temperature products varies with
viewing angle. However, since the sensor provides multiple
observations over the same location over a period of time short
enough to neglect the dynamics of soil moisture redistribution,
the multiviewing angle observations of brightness temperature
could potentially be used to provide multiple constraints on the
range of local brightness temperature in efforts to disaggregate
brightness temperatures to hillslope scales using the conceptual
methodology outlined above.

Finally, this study is instructive for efforts to use microwave
brightness data to update hydrological models through data
assimilation. Many data assimilation frameworks such as the
ensemble Kalman filter require the use of an observation opera-
tor that ingests information about the model state to produce
predicted observations (e.g., see [11], [12], and [69]–[71]).
Data assimilation is particularly attractive to constrain soil
moisture estimates from watershed ecohydrology models such
as tRIBS–VEGGIE to observational data [72]–[74] partly be-
cause soil moisture controls the partitioning of rainfall into
infiltration and runoff as well as the partitioning of incoming
radiation into latent and sensible heat. This paper highlights
the potential importance in hillslope-scale soil moisture data
assimilation studies of including topographic effects on local
incidence angle and polarization rotation when the observation
operator is an RTM. It also implies that to adequately capture
these effects, the sky position of the satellite relative to the area
being studied must be known when modeling the microwave
brightness observation at the sensor.
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