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Abstract- Covariance models (CMs) are a very sensitive 
tool for finding non-coding RNA (ncRNA) genes in DNA 
sequence data. However, CMs are extremely slow. One 
reason why CMs are so slow is that they allow all 
possible combinations of insertions and deletions relative 
to the consensus model even though the vast majority of 
these are never seen in practice. In this paper we 
examine reduction in the number of states in covariance 
models. A simplified CM with reduced states which can 
be scored much faster is introduced. A comparison of 
the results of a full CM versus a reduced-state model 
found using a genetic algorithm is given for the let7 
ncRNA family. 

1 Introduction 

Covariance models are a very powerful but extremely 
slow method for searching genome databases for potential 
non-coding RNA genes. The models are statistically based, 
with probabilities of insertions, deletions, and mutations 
estimated from the observed frequencies of events in a 
known family of ncRNA genes. The slowness of the 
algorithm can be traced to the attempt to fit sequences of all 
lengths between 1 and a model-specific maximum length D 
to every possible contiguous sub-model of the family. Any 
consensus nucleotide position may be deleted and insertions 
of any length (such that the overall scored sequence is at 
most length D) can occur at any position. 

The recent discovery of a lossless prefilter to eliminate 
significant portions of the database sequence from 
consideration by the CM [1] has not reduced the need to 
improve the speed of covariance models. If anything the 
need for faster covariance models has increased since the 
prefilter has changed the necessary computation time from 
unaceptable to merely much too long. 

The importance of finding non-coding RNA genes has 
increased as molecular biologists have found increasing 
numbers of catalytic and regulatory mechanisms which are 
performed by functional RNA molecules alone or ncRNA 
molecules in conjunction with proteins [2]. These ncRNA 
genes include the transfer RNAs (tRNA) that transport 

amino acids, ribosomal RNA (rRNA) which performs an 
essential role in protein synthesis, and a component of 
telomerase which is associated with maintenence of 
chomosome ends [3]. 

In this paper we attempt to find simplified covariance 
models which score well against the members of a ncRNA 
family. The simplified models have a reduced number of 
strategically placed insert and delete states. The attempt is to 
cover the few major variations in structure that might occur 
in a family and let the minor variations result in small 
degradations in search efficacy. In this way, small losses in 
specificity and/or sensitivity are traded for gains in search 
speed. 

The method used to find the simplified models is to use a 
genetic algorithm since the choices of insert and delete 
states to retain interact with each other and thus there is no 
simple way of choosing whether to retain a given state from 
the original model independent of the others. 

Section 2 provides an overview of how covariance 
models are used to search for ncRNA genes.  The simplified 
covariance models are described in section 3. The method 
for finding a good simplified covariance model using a 
genetic algorithm is described in section 4. Experimental 
results are shown in section 5 for a specific ncRNA family 
(the let7 ncRNA family). Section 6 concludes.  

 

2 Covariance Models 

A covariance model [4] is a statistical model of 
nucleotide sequences belonging to a family of non-coding 
RNAs. The model is based on a multiple alignment of 
sequences where the alignment columns are annotated with 
base pairing information. Like a profile hidden Markov 
model (HMM), observed frequencies of symbols and gaps 
in alignment columns are used to estimate probabilities of 
symbols at each location as well as probabilities of 
insertions and deletions at each location. Unlike an HMM, a 
covariance model also specifies the probabilities of long-
range interactions within the single-stranded RNA three 
dimensional structure. This is possible because the 
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covariance model is a context-free grammar, whereas the 
HMM is based on a regular grammar incapable of modeling 
long range interactions [5]. 

A CM has six different types of nodes:  P, L, R, B, S, 
and E. A pair-wise emission node (P) specifies that the 
consensus structure of the ncRNA family contains a base 
pair between two columns of the multiple alignment.  
Information associated with this type of node include the 
sixteen probabilities of emitting each of the sixteen possible 
pairs of nucleotides, the probability that the base pair is 
omitted, the probability that only the 3’ nucleotide of the 
base pair exists, the probability that only the 5’ nucleotide 
exists, and the probabilities that additional nucleotides are 
inserted between the consensus base pair. A left (L) or right 
(R) emission node specifies an unpaired base in the 
consensus structure. Probabilities associated with L and R 
nodes include the probabilities of emitting each of the four 
possible nucleotides, the probability that the position is 
omitted, or that one or more additional inserted nucleotides 
are emitted next to the consensus position. A bifurcation 
node (B) allows the joining of two sub-models which are 
contiguous along the sequence. A start (S) node is used at 
the head of any branch (including the root) and an end node 
(E) is used to end a branch at a leaf position. 

Figure 1 shows an example of a multiple alignment 
annotated with structural information. The “-“ symbol 
indicates a non-based-paired alignment column.  The “>” 
and “<” symbols mean that the column is base paired with a 
column to the right and left respectively. This notation only 
works for structures without pseudoknots. Since covariance 
models can not handle pseudoknotted structures, this 
limitation of the notation is not a problem. When a structure 
actually has a pseudoknot, some of the base pairing 
information is ignored by the covariance model and the 
associated bases treated as if they were unpaired. This 
results in some loss of power in database search.  In figure 
1, the second column is base paired with column ten. The 
“.” symbol means that the column does not exist in the 
consensus structure. The example data used in Figures 1, 2, 
3, and 5 are purely fictitious and are provided only to 
demonstrate the mechanics of covariance models. 
 
 
 

Rat   AUGG.ACCAAG.GUCAGAC 
Bat   AUGAACUCCAGCGUCCGAC 
Cat   CGG..GUCCCG.GA.AUU. 
Fly   A.GAACUCG.G.GUCAGAC 
Cow   AUCA.UUGUAG..UUA.AC 
Consensus: 
Structure  ->>>.-<<-<-.>>---<< 
Sequence  AUGA.CUCCAG.GUCAGAC 
 
Figure 1:   Multiple alignment annotated with structure 
 

Figure 2 shows the consensus sequence and structure of 
the ncRNA family. The dots indicate that two positions are 
base paired. The "A" pointed to by the arrow labeled "L1" is 
the first nucleotide in the consensus sequence (i.e. it is on 
the 5' end of the molecule). It will be assigned to an L node 
with node index 1. The dotted pair "AU" with the dashed 
oval around it will be assigned to a P node with index 7. A 
bifurcation is necessary to split the two groups of pair nodes 
(the two stems). 

 

 
 
Figure 2:   Consensus sequence and structure 
 
Figure 3 shows the nodes of a covariance model based 

on the multiple alignment in figure 1. The CM forms a 
binary tree with an S node at the root (called the root start 
node).  The consensus sequence characters are shown next 
to the CM node that emits them (P, L or R). We note that 
some of the columns of the multiple alignment could be 
represented with either an L or an R node. When this 
happens, an L node is always used by convention. 

 

 
 
Figure 3:   CM nodes in binary tree 
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The nodes of the model contain one or more states. For 
the emitting L, R, and P nodes, one of the states represents a 
consensus character (L and R nodes) or characters (P node) 
associated with the node and the other states allow for 
insertions and deletions relative to the consensus. Figure 4 
shows the detail of an L node. These nodes contain a match 
left (ML) state which represents the consensus structure 
emission of an unpaired nucleotide. In the figure, the L8 
node is shown in particular, so the ML8 state emits the 
consensus character C with highest probability. The other 
nucleotides (A, G, and U) are emitted with a lower, but 
nonzero, probability. 

Deletions and insertions relative to the consensus are 
accomplished by either bypassing ML8 via the non-emitting 
D8 state or passing through the emitting IL8 state in 
addition to the ML8 state. The IL8 state has a self loop 
which allows for an arbitrary number of insertions to the 
right of the match character. 

The internal state structure of all nodes has either one or 
two tiers. The top tier always exists and contains all states 
other than insert states and the bottom tier contains all insert 
states. All states of a node are connected to the top tier 
states of the node below. In Figure 4, the thick arrows 
indicate (possibly) multiple connections. The ML8 and D8 
states are in the top tier and the IL8 state is in the bottom 
tier. It is the potential elimination of the D8 and IL8 states 
within the L8 node that is investigated in this work. All 
nodes of the original CM will be retained and all nodes will 
retain the state associated with the consensus nucleotide or 
nucleotides. 

 

 
 
Figure 4:   Internal state detail of a left node 
 
A search of a chromosome nucleotide sequence of length 

L for possible ncRNA genes belonging to the ncRNA 
family associated with a CM can be done using the CYK 
algorithm [4]. The algorithm starts at the end states at each 
leaf of the binary tree describing the CM and works up the 
tree toward the root. Linear programming is used to find the 
best possible score for every subsequence ending at each 
position j in the chromosome sequence and of each possible 

subsequence length d up a to maximum subsequence length 
of D. The states are given a unique index number ν such 
that γ(ν, j, d) represents the best possible score for the 
chromosome subsequence of length d ending at j fitted to 
the sub-model including state ν and all states below it in the 
tree. The start state in the root start node is given index 0, so 
γ(0, j, d) is the overall score of the model and the maximum 
of this score over d represents the likelihood that a gene of 
the family is located in the chromosome ending at sequence 
position j. 

End (E) nodes contain only one state called an end (E) 
state. These states take a score of 0 for the null sequence (d 
= 0) at all positions along the chromosome. The E states are 
not allowed to hold any symbols, so the score for d > 0 is 
minus infinity: 
 

E: γ(ν, j, 0) = 0;  γ(ν, j, d) = -∞, where d > 0 (1) 
 
Pair-wise emission (MP) states appear only as the 

consensus emitting state in P nodes. Since the state emits 
two symbols (one on each end of the sequence passed up 
from below in the tree), the resulting sequence with two 
added symbols can be no shorter than length two.  
Therefore, the score is set to minus infinity for d = 0 and d = 
1. Otherwise, the log likelihood e of emitting the two 
characters found in the chromosome sequence is added to 
the best child state score. The symbol emitted on the right is 
located at position j and the symbol emitted on the left is 
located at position j+1-d. These symbols are denoted x(j) 
and x(j+1-d) respectively. The score from a child state y is 
the child state's score γ(y, j-1, d-2) plus the transition 
probability from the child to the MP state t(ν, y). The child 
state's score is taken for a subsequence of length two shorter 
and starting one position earlier in the chromosome 
sequence to allow room for the two symbols emitted by the 
pair-emitting state: 

 
P: γ(ν, j, 0) = γ(ν, j, 1) = -∞; (2) 
γ(ν, j, d) = maxy [γ(y, j-1, d-2)+t(ν, y)] + e[ν, x(j+1-d), x(j)], 
 where d > 1, and y is a child of ν 

 
Left emission (ML, IL) states appear as the consensus 

emitting states of L nodes (an ML state), as states to add 
inserted symbols relative to the model in P, L, and some S 
nodes (an IL state) and as a partial match in P nodes where 
the right portion of the emitted pair is deleted (an ML state).  
Since this state emits one symbol, the resulting sequence out 
of the state can be no shorter than length one. Therefore the 
score of the null sequence (d = 0) is set to minus infinity.  
Otherwise, the log likelihood of emitting the single symbol 
is added to the best score from the child states: 

 
L: γ(ν, j, 0) = -∞; (3) 
γ(ν, j, d) = maxy [γ(y, j, d-1) + t(ν, y)] + e[ν, x(j+1-d)], 
 where d > 0, and y is a child of ν 
 

IL 8 

ML 8 D 8 
L 8  C 

From every state in next higher node 

To every 1st tier state in next lower node 
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Right emission (MR, IR) states appear as consensus 
emitting states of R nodes, as insertion states in P, R, and 
the root S node, and as a match state in P nodes where the 
left symbol of the pair has been deleted. This state emits a 
single symbol and therefore the score of the null string is 
minus infinity. The scoring of non-null sequences is similar 
to that for the left emission states: 

 
R: γ(ν, j, 0) = -∞; (4) 
γ(ν, j, d) = maxy [γ(y, j-1, d-1) + t(ν, y)] + e[ν, x(j)], 
 where d > 0, and y is a child of ν 
 
Bifurcation (B) states consider all possible divisions of d 

symbols from the chromosome between two branches of the 
CM binary tree. The left-most d-k symbols are assigned to 
the left branch and k symbols are assigned to the right 
branch. The value of k which generates the best overall 
score is chosen: 

 
B: γ(ν, j, d) = max0≤k≤d [γ(y, j-k, d-k) + γ(z, j, k)], (5) 
 where y and z are the children of ν 
 
Delete and start (D, S) states are place holders that allow 

different transition probabilities to be attached for different 
child states. Delete states appear in P, L, and R nodes and 
serve as a path around the match state. S states appear in S 
nodes and serve to collect multiple paths together into a 
single path either at the root or as one of the two branches 
of a B node: 
 

D or S: γ(ν, j, d) = maxy [γ(y, j, d) + t(ν, y)], (6) 
 where y is a child of ν 
 
Since all states in the CM are evaluated for every 

position j and length d in the chromosome database 
sequence, eliminating model states will significantly reduce 
computational time. The elimination of insert and delete 
states is considered in what follows. This includes 
consideration of all IL, IR, and D states. It also includes 
consideration of ML and MR states within P nodes. 

3 Simplified Covariance Models 

When looking at the structure-annotated multiple 
alignments of ncRNA families one sees that there are many 
columns that contain no dots (no deletions relative to the 
consensus model) and rather few columns with a dot as the 
consensus character (few insert locations relative to the 
consensus model). The standard covariance model allows 
any consensus column to be deleted and any number of 
inserts between any two adjacent columns. The number of 
states in the covariance model could be greatly reduced if 
the delete and insert states associated with strongly 
conserved portions of the sequence were eliminated. 
 

 
Rat   AUGG ACCAAG.GUCAGAC 
Bat       AUGAA CUCCAGCGUCCGAC 
Cat   CGG. GUCCCG.GA.AUU. 
Fly   AGAA CUCG.G.GUCAGAC 
Cow   AUCA UUGUAG..UUA.AC 
Consensus: 
Structure  ->>> -<<-<-.>>---<< 
Sequence  AUGA CUCCAG.GUCAGAC 
 

Figure 5:   Removal of the insert state to right of "AUGA" 
 
 

The extent to which removal of a delete or insert state is 
detrimental to the score of sequences which are true family 
members depends in part on how many sequence characters 
are forced out of their optimal alignment positions. It is 
possible that a sequence which needs an insert which has 
been removed from the model also uses a delete in close 
proximity. In this case, if both the insert and delete are not 
used, then the number of shifted characters may be small.  
An example of this is given in Figure 5 where we have 
removed the first insert state from Figure 1. The fly 
sequence has only lost the "GA" portion of the original 
multiple alignment. The subsequence "GAA" has moved to 
the left, but the final "A" was not initially matched (it was in 
the column with consensus insert initially - a "." consensus 
structure). 

In the case of bat in Figure 5, there is no nearby delete in 
the sequence to absorb the character from the missing insert 
state, so the entire subsequence "AUGAA" gets moved to 
the left and the matching of "AUGA" is lost. It is difficult to 
come up with a simple rule for when to allow the removal 
of an insert or delete state based solely on the number of 
sequences using a particular state in the optimal multiple 
alignment. To find a reasonable set of states to retain, we 
will use a genetic algorithm to search the space of retained-
state combinations with the dual objectives of keeping the 
number of retained states high and the reduction in mean 
score of the known ncRNA family low. 

4 Finding Retained States of Simplified CMs 

The determination of which insert and delete states of the 
original covariance model to retain can be made using a 
genetic algorithm (GA). A binary vector where 1 means 
retain a state and 0 means omit a state is used. For each P, 
L, or R node of the original model, four, two, or two bits 
respectively appear in the binary vector. For a P node, the 
bits represent IL and IR states and DR and DL pseudostates.  
If both DR and DL is omitted, then the D, MR, and ML 
states are removed. If only DL is omitted, then only MR is 
removed.  If only DR is omitted, then only ML is removed.  
For an L node, the bits represent D and IL states. For an R 
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node, they represent D and IR states.  Using a 
representation with delete and insert retention choices co-
mingled allows good local choices of delete/insert retention 
to be retained during cross-over. Table 1 gives an overview 
of the entire representation. 

 
TABLE 1 

SUMMARY OF GA REPRESENTATION BITS BY NODE TYPE 
Node 
Type 

Insert 
States 

Delete 
States 

GA 
Bits 

P IL, IR D, MR, ML IL, IR, DR*, DL*

L IL D IL, D 
R IR D IR, D 
S (root) IL, IR - IL, IR 
S (right 
bifurcation) 

IL - IL 

*DR and DL are pseudostates.  If DR and DL are 0, then D, MR, and ML 
are removed.  If only DR is 0, then only ML is removed.  If only DL is 0, 
then only MR is removed. 

 
The vector with all 1s should always be included in the 

initial generation of the GA.  This is simply a representation 
of the original model. Placing the original model in the 
initial generation makes sure that the possibility of no state 
reduction is considered. 

The fitness function must penalize inclusion of more 
states while encouraging higher mean scores for known 
ncRNA family members. The fitness function f = s - αn can 
be used where f is the fitness, s is the mean score, n is the 
number of retained states, and α is a positive adjustment 
parameter. The parameter should be chosen larger for more 
aggressive state reduction and smaller for less loss of score.  
The choice of α = S / 2N, where S is the mean score and N 
is the number of states in the original model is reasonable if 
the maximum loss of score that can be tolerated is half of 
the original score. In this case f = S/2 for the original model.  
The lowest possible score for any combination of retained 
states which improves on the original model is S/2 (which 
occurs when n = 0, and s = S/2 plus a small amount). As 
long as the best individual always is passed to the next 
generation such that monotonically non-decreasing best 
fitness is assured, then S/2 is the smallest possible score. 

5 Experimental Results 

To test the idea of simplifying a covariance model by 
reducing the allowed states in the model nodes, the let7 
ncRNA [6] covariance model was investigated. The original 
model was taken from the rfam ncRNA database [7].  The 
family of this model has 47 known members and is 
composed of 31 pair nodes, 11 left nodes, and 10 right 
nodes. The structure of the model is shown in Figure 6.  The 
notation “nP>” means that the consensus sequence has a 
group of n columns assigned to P nodes where the paired 
columns are to the right in the sequence. The notation “nL” 
is for a group of n L nodes and “nR” for a group of n R 

nodes. Using the same notation, the structure of Figure 1 
could have been described as “1L 3> 1L 2< 1R 1< 1L 2> 
3L 2<”. 

 
 
6P> 1L 21P> 3L 4P> 7L 4P< 10R 27P< 
 
Figure 6:   Structure of let7 covariance model 
 
 
The scores that are obtained by fitting the 47 known let7 

ncRNA sequences to the match states of the covariance 
model are shown in Table 2. The sequences are optimally 
aligned to the match states since all nodes have a full set of 
insert and delete states. The “pairs” scores are those 
obtained from the match states of the 31 pair nodes only.  
The “singles” scores are those from 21 left and right nodes 
only. The “pairs and singles” are from all 52 nodes. The 
units of the scores are bits and represent the log2 of the 
likelihood ratio for the fitted sequence compared to a 
random sequence. Therefore a threshold of 40 bits on the 
score during a search would find all 47 sequences with an 
expected false positive rate of one per 1.1x1012. The 
minimum and maximum columns do not necessarily add as 
the mean column does since the minimums and maximums 
do not necessarily occur in the same sequence. 

 
TABLE 2 

SCORES WITH COMPLETE INSERT/DELETE COVERAGE 
 Mean Minimum Maximum 
Pairs 58.16 38.08 65.80 
Singles 13.03 5.92 20.52 
Pairs and Singles 71.19 49.71 82.97 

 
 

Table 3 shows scores comparable with those of Table 2 
for the case where inserts and deletes have been limited to 
three inserts and 17 nodes with deletes. In the original 
model, all 52 nodes can be deleted and all possible inserts 
can occur. A threshold of 40 bits using this reduced set of 
insert and delete states would still find all 47 sequences. 

 
TABLE 3 

SCORES WITH LIMITED INSERT/DELETE COVERAGE 
 Mean Minimum Maximum 
Pairs 56.74 28.81 65.80 
Singles 12.49 4.24 20.52 
Pairs and Singles 69.23 44.49 82.53 

 
 

The details of the delete states and insert states retained 
are given in Table 4 and Table 5 respectively. The nodes 
that are chosen to include delete states are mostly single 
emission nodes (L nodes or R nodes), with only one pair 
node having a delete state. Table 2 shows that the last node 
of the “21P>” and the first node of the “27P<” group have a 
delete state, but these are the two halves of a single pair 
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node. The result is that 35 out of 52 delete states have been 
eliminated. Of the 62 total MR and ML states in the P nodes 
only two remain. Only three insert states have been retained 
and they are all on the ends of single emission groups. The 
“7L” group retains a single insert on its left and on its right 
ends. The “10R” group retains a single insert on its left end.  
Since the bulk of the model’s power comes from the pair 
nodes and gaps rarely appear in the multiple alignments 
within pair node groups, the main function of the insert 
states seem to be to keep the adjacent pair node groups 
properly aligned. Additional investigation of whether the 
left and right nodes can be eliminated altogether might 
result in even simpler yet still effective models. 
 
 
 

TABLE 4 
NODES CHOSEN WITH DELETE STATES 

FOR LIMITED COVERAGE CASE 
Structure 
Group Nodes 

Structure 
Group 

 
Nodes 

6P> None 7L First four 
1L None 4P< None 
21P> Last one 10R All but 4th

3L All 27P< First one 
4P> None   

 
 
 

TABLE 5 
NODES CHOSEN WITH INSERT STATES 

FOR LIMITED COVERAGE CASE 
Structure 
Group Nodes 

Structure 
Group 

 
Nodes 

6P> None 7L Left of first 
1L None  Right of last 
21P> None 4P< None 
3L None 10R Left of first 
4P> None 27P< None 

 

6 Conclusions 

It appears that traditional covariance models that include 
insert and delete states in every emission node may be 
significantly over-parameterized. We have seen that 
eliminating most of these states from the let7 ncRNA 
covariance model causes very little detriment to the 
effectiveness of the model. 

Further investigation should include experimenting with 
more ncRNA family models to see if a large amount of state 
reduction is generally possible. A quick look at the multiple 
alignment of other families leads one to believe that this is 
likely the case since there are often large gap-less blocks, 
especially in blocks assigned to pair nodes. It is also worth 
investigating whether models including only pair nodes are 
sufficiently powerful for ncRNA gene database search. 
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