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Abstract 

A finite volume model was built upon earlier work with the aim of simulating free surface flows, 

pressurized flows and their simultaneous occurrence (mixed flows) in single-liquid and two-phase flow 

conditions (entrapment and release of air pockets). The model presented herein is based on a two-governing 

equation model. Three main contributions are presented herein, namely: (1) the ability of the proposed 

model to simulate mixed flows without restriction of the flow type in the free surface region (e.g., 

supercritical flow), (2) extension of our single-phase flow model for simulating the entrapment and release 

of air pockets, and (3) formulation of an approach for handling numerical instabilities that may occur 

during numerical pressurization of the flow. The model presented herein is robust and simulates any 

transient-mixed flow condition for realistic pressure wave celerities. 

 
Keywords: Air entrapment, air pockets, air release, mixed flow, open channel flow, pressurized flow, 
sewer, transient flow, two-phase flow, unsteady flow 

 

1  Introduction 

The simultaneous occurrence of free surface and pressurized flows (mixed flows) are simulated using one 

or two sets of governing equations (e.g., Capart et al. 1997, Trajkovic et al. 1999, León 2006, Vasconcelos 

et al. 2006, Politano et al. 2007, or León et al. 2009a). Mixed flow models that use only the single set of 

the Saint-Venant equations require an approximation for simulating pressurized flows. The most common 

approximation is the well-known Preissmann slot, which consist of a hypothetical narrow open-slot on top 

of the conduit (Capart et al. 1997, or Trajkovic et al. 1999). The main limitation of this model is its 

inability to simulate sub-atmospheric pressures in pressurized flow conditions. To overcome this limitation, 

Vasconcelos et al. (2006) modified the Saint-Venant equations to allow for over-pressurization, assuming 
that elastic behavior of the pipe walls will account for the gain in pipe storage. The main limitation of this 

approach is the presence of what these authors call “post shock oscillations” near open channel-pressurized 

flow interfaces. To keep these oscillations small, lower values for the pressure wave celerity may be used, 

yet this may compromise the simulation accuracy if pressurized transients are simulated. It is cautioned that 

numerical oscillations may produce unrealistic negative pressures and pollute the numerical solution. 

Mixed flow models that are based on a one single set of governing equations use small values of the 

pressure wave celerity to avoid numerical instabilities (Trajkovic et al. 1999, or Vasconcelos et al. 2006). 

Good results are obtained when simulating mixed flows in a single pipe, in which the pressurized flow 

region is isolated and there is no interaction of pressurized waves (Trajkovic et al. 1999, Vasconcelos et al. 

2006, or León et al. 2009a). However, as shown by León et al. (2009b), if there is interaction of pressurized 

waves, such as in multiple pipe flow, the results highly depend on the selection of the pressure wave 
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celerity. As discussed by León and Ghidaoui (2009), numerical oscillations in pipe filling bores can be 

minimized for realistic wavespeeds (e.g., ~ 1000 m/s) by choosing governing equations that best mimic the 

physics. The flow regime on one side of the filling bore is pressurized flow, while that on the other side is 

free surface flow. Hence, an appropriate approach enforces the waterhammer equations in the pressurized 

region, the Saint Venant equations in the free surface region and the jump relations across the filling bore. 

Among the approaches for simulating mixed flows (single-phase flows), Finite Volume (FV) shock-
capturing methods, in particular Godunov-Type Schemes (GTS), are gaining popularity for their ability to 

capture shocks in the solution automatically, without explicitly tracking them (Nujic 1995, Sanders 2001, 

or Toro 2001). These schemes were applied to the Saint-Venant equations and the two governing equations 

(Saint-Venant equations and compressible waterhammer equations). As mentioned above, a two-governing 

equation model must be used for simulating complex closed-conduit systems for transient mixed flows with 

a pressure wave celerity of ~1000 m/s. Regarding single-phase mixed flow models based on the application 

of FV schemes to both the Saint-Venant equations and the compressible waterhammer equations (two sets 

of governing equations), the present authors are aware of only two FV models, namely these of León 

(2006) and of Bourdarias and Gerbi (2007). León (2006) presented a shock-tracking-capturing method, in 

which open channel-pressurized flow interfaces are tracked, introducing or merging cells as the interfaces 

propagate in the pipe. The compatibility conditions are enforced across open channel-pressurized flow 

interfaces, and a shock-capturing approach is used in pure free surface and pressurized flows.  
Bourdarias and Gerbi (2007) presented a shock-capturing approach for simulating mixed flows, in 

which the governing equations for free surface and pressurized flows were linearized. For a positive open 

channel-pressurized flow interface, the mass and momentum compatibility conditions were enforced across 

the mixed flow interface together with the Rankine-Hugoniot mass conservation condition across a 

linearized wave in the pressurized flow region. For negative interfaces, besides the equations used for 

positive interfaces, the energy equation was enforced across the interface and a linearized open channel 

flow Riemann problem was solved using the well-known linearized Riemann solver (Toro 2001, León et al. 

2006, or León 2006). Song et al. (1983) defined an open channel-pressurized (mixed) flow interface as 

positive if it is moving towards the open-channel flow (Fig. 1 a), and negative if it is moving towards the 

region of pressurized flow (Fig. 1 b). The directional interface change from positive to negative is called 

interface reversal (Fig. 1 c). Bourdarias and Gerbi (2007) also used the linearized Riemann solver for 
computing the flow variables in the free surface and pressurized flow regions. As pointed out by Toro 

(2001), the linearized Riemann solver for free surface flows is not sufficiently robust to be generally used. 

In particular, this solver may give negative depths in cases involving strong rarefactions leading to very 

shallow water. Furthermore, the approach proposed by Bourdarias and Gerbi (2007) for negative interfaces 

(mixed flow) was formulated only for subcritical free surface flow. Thus, a model is desired with 

capabilities of simulating mixed flows without restriction of flow type in the free surface region (e.g., 

supercritical flow). 

When using a two-governing equation model and simulating a pure free surface flow that is about to 

get pressurized, numerical instabilities, which may lead to program abortion, may occur, especially if pipe 

filling is slow. Numerical instabilities occur because of singularities in the equations for numerical 

pressurization of the flow. For instance, the wave speed of a mixed flow interface is singular at the 

threshold for changes from free surface to pressurized flow. If the piezometric heads of the free surface and 
the pressurized flows are similar, numerical instabilities may occur. These instability problems are 

increased due to the precision of the computer used. The lower the precision used the more instability 

problems are attained. To make a model robust, the instability problems due to numerical flow 

pressurization need to be addressed. 

With regard to two-phase flow models (entrapment and release of air pockets) based on the application 

of FV schemes to both the Saint-Venant equations and the compressible waterhammer equations, no model 

appears to be currently available. This work is organized as follows: (1) governing equations for single and 

two-phase flow conditions are provided, (2) numerical solution of mixed flow interfaces is presented, (3) 

threshold levels for piezometric depths during numerical pressurization is presented, (4) accuracy and 

robustness of the proposed model are evaluated using experimental literature data, and (5) results are 

summarized. 
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Figure 1 (a) Positive interface moving in upstream direction, (b) Negative interface moving in upstream 

direction, (c) Interface reversal 

 

2  Mathematical description  

2.1 Governing equations for free surface and pressurized flows 

The governing equations used herein are identical to those of León (2006) for single-phase flows, except 
for the air-phase. In the single-phase flow model, the free surface region is simulated using the 1D Saint-

Venant equations and the pressurized region is simulated using the 1D compressible waterhammer 

equations. The inclusion of the air-phase in the Saint-Venant equations is similar to the approach used by 

Arai and Yamamoto (2003) and Vasconcelos (2005). These equations are 
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in which the vector variable U, the flux vector F and the source term vector S for open-channel flows may 

be written as (León 2006, León et al. 2006)  
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For compressible water hammer flows these are (Guinot 2003, León 2006, León et al. 2008) 
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where the variables for free surface flows are A = cross-sectional flow area, Q = flow discharge, p = 

average pressure of water column over the cross sectional area, H = gauge air pressure head, ρw = liquid 

density (assumed constant for free surface flows but not for pressurized flows), g = gravitational 

acceleration, So = slope of channel bottom, and Se = slope of energy line. The variables for compressible 

water hammer flows (pressurized flows) are Af = full cross-sectional conduit area, p = pressure acting on 
gravity center of Af, and ρf = fluid density for compressible water hammer flows. For single-phase flow 

conditions (liquid only), H = 0 and the term ρw gAf H in Eq. (2) is dropped. 
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Equation (1) for compressible water hammer flows does not form a closed system because the flow is 

described using the three variables ρf, p and Q but only two equations are available. To close this system, 

the following equation relating p and ρf is used (León et al. 2007, 2008) 

 

 )(= 2

reffref app ρρ −+  (4) 

 

where a = pressure wave celerity in single-phase flow conditions, ρref and pref = reference density and 

reference pressure, respectively. The reference state (subscript ref) is defined at the phase change from free 

surface to pressurized flow, for which all flow parameters in both free surface and pressurized flow regime 

are identical. Note from Eq. (2), that the only variable associated with the air phase is the gauge air pressure 

head H, which computation for no air release and air release conditions is presented next. 
 

2.2 No air release 

Considering an isolated air pocket, the ideal gas law with the assumption of an isentropic process gives 

(e.g., Martin 1976)  
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where H = absolute air pressure head, V = volume of air pocket and k = heat capacity ratio, H* = H + Hb
*, 

where Hb
* = atmospheric pressure head. 

For a confined air pocket with no air-release, Eq. (5) can be used to compute H required to estimate F 
in Eq. (2). To determine H, the volumetric change of an air pocket with time dV/dt needs to be determined. 
It is computed using the net flow discharge flux evaluated at the air pocket boundary as (Fig. 2) 

 1/21/2=
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−+ − jr QQ
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Figure 2 Sketch of confined air pocket 

 

Note from Fig. 2 that the fluxes at cell interfaces inside the air pocket other than the boundaries cancel 

each other. Previous approaches used the speed of open channel-pressurized flow interfaces surrounding an 
air pocket for computing dV/dt (Wang et al. 2003, or Vasconcelos 2005). Tests with the proposed model 

using the latter approach lead to numerical oscillations and eventually the abortion of the program. These 

oscillations are caused by the extremely sensitive speed of the interface that changes rapidly, especially in 

fast pipe filling scenarios. Conversely, the approach of computing dV/dt using Eq. (6) leads to a robust 

model virtually free of numerical oscillations. If Eq. (6) is used, numerical instabilities may still be present 

due to other reasons such as the numerical scheme used for solving the governing equations, however the 

instabilities due to air volume computation are reduced. For computing air density, the air pocket volume at 

the new time step is updated as Vn+1 = Vn + dt(dV/dt). The new air density is computed using this new air 

pocket volume. 

 

2.3 With air release 

Considering air release, Eq. (5) can be modified to take into account the air flow discharge out of an air 

pocket. This new relation is (Martin 1976, or Zhou 2000) 
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where m = mass of air with the mass flow rate given by 
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where Cd = discharge coefficient, ρa = density of air, Ao = area of orifice and Y = expansion factor given by 

(Martin 1976, or Zhou 2000) 
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If H*/Hb
* > 1.89, the orifice is choked and (Martin 1976) 
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For the case of air release, dV/dt can be computed in the same way as for no air release. For computing air 

density, the mass of air inside the air pocket at the new time step is updated according to the air flow 

discharge. The new air density is computed using this new air mass and the new air pocket volume. 

Free surface flow tests in circular pipes (Hamam and McCorquodale 1982) demonstrated that flow 
instabilities occur for piezometric depths greater than 0.8d, causing oscillations that lead with a sudden 

jump to pressurized flow. As mentioned above, the phase change from free surface to pressurized flow (not 

from pressurized to free surface flow) is assumed to occur if the piezometric depth exceeds y = yref, where y 

= piezometric depth and yref = reference depth. Herein, yref = 0.95d. Note that the results are not 

significantly sensitive to yref. However, when using a small value of yref, large mass conservation errors may 

occur. The reference area Aref is the hydraulic area below yref = 0.95d and Af in the previous equations is 

replaced with Aref. This results in a reduction of the hydraulic area for pressurized flows of less than 2%. If 

using the present model to simulate pure pressurized flows, Aref can be set equal to Af. The reduction in 

hydraulic area for pressurized flows of less than 2% is then eliminated. For the phase change from 

pressurized to free surface flow, the criterion of Yuan (1984) is used. 

The above presented governing equations relate to free surface and pressurized flows. Consider now an 
interface between free surface and pressurized flow regions moving with a speed w. The weak form of Eq. 

(1) is (Toro 2001) 

 

 0=FU ∆+∆w     (11) 

 

where ∆ = jump across the interface. Denoting by subscript L the state variables to the left and by R the 

state variables to the right of the interface, and assuming that the flow to the left of the interface is free 

surface and pressurized to the right, the weak form of Eq. (1) is 
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The flow variables used herein are (ρwA) and (ρwQ) for free surface flows, and (ρfAf) and (ρfQf) for 

pressurized flows. However, the engineering community prefers to use the piezometric head h and 

discharge Q. The latter variables can be determined from the flow variables as 

 

    • Free surface flow  
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    • Pressurized flow  
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where h is measured from the conduit bottom. For convenience, subscripts “f” and “w” are now dropped. 
After a given node has been pressurized, free surface flow is not necessarily generated at this node if 

its head drops below the pipe crown. As reported by Cardle (1984), Yuan (1984), or Cardle et al. (1989), 

there is a negative pressure on the pressurized side of the interface in negative interfaces. The latter implies 

that if a pipe system has been fully pressurized, the only way to start the depressurization process is through 
ventilated boundaries by dropshafts or reservoirs [e.g., Cardle 1984]. 

 

3 Numerical solution of mixed flow interfaces 

3.1 Overview 

A part of our model for simulating mixed flows only is presented. For pure free surface and pressurized 

single-phase flows the reader is referred to León (2006) and León et al. (2006, 2008). A mixed flow is 

composed of one region in free surface flow and another adjacent in pressurized flow conditions. The 

numerical scheme used for updating the solution from one time step to the next for mixed flows is the same 

as presented by León (2006) and León et al. (2006, 2008) for free surface and pressurized flows. This 

scheme is an explicit FV method first-order accurate near shocks and discontinuities and second-order 

accurate away from discontinuities. When using the FV scheme, to update the flow variables U at cell “i” 
from a time step to the next the numerical flux F at the cell interfaces i-1/2 and i+1/2 need to be estimated. 

For computing vector F in Eqs. (2) or (3), the flow variables at the cell interface [(ρA)i+1/2 and (ρQ)i+1/2] 

need to be estimated. This section focuses on the computation of these if the flow regime at the sides of the 

cell interface i+1/2 are different. If the flow regime changes across the cell interface, it is named herein 

mixed flow interface. The approach used herein for estimating the flow variables is similar to that used by 

Song et al. (1983), Cardle (1984), Cardle and Song (1988), or Bourdarias and Gerbi (2007). Note that the 

treatment of boundary conditions is not presented herein due to space limitations. The reader is referred to 

León et al. (2009b). 

 

3.2 Positive interface propagating upstream 

In this case a mixed flow interface is moving upstream towards the open-channel flow region. The 

treatment for such a positive interface propagating downstream is identical to this case but will not be 

presented. The flow across a positive interface is equivalent to a flow across a hydraulic bore or, in 

compressible gas flow, a shock, which means that the flow changes from supercritical or supersonic to 

subcritical or subsonic flow as it moves in relative coordinates (Cardle 1984). A classical statement in 

hydraulics used in the video “Waves in fluids” (Bryson 1964) reads: “A disturbance behind a shock moving 

towards the shock interface catches up with it and disturbances in front of the shock are overtaken by it”. 

This statement is simply that the Froude (Mach) number behind a shock < 1 and ahead of it > 1. By making 

use of this classical statement the x-t diagram for a positive interface having subcritical flow in the free 

surface region was constructed (Fig. 3), similar to the diagram of Song et al. (1983), or Cardle and Song 

(1988). 
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Figure 3 x-t diagram for a positive interface propagating upstream 

  

Recall that the flow variables at the cell interface i+1/2 at time tn+1 (Ui+1/2
n+1) are sought to compute the 

fluxes at this interface. In Fig. 3, the flow variables at left and right of the cell interface i+1/2 at time tn+1 

are Up1
n+1 and Up2

n+1, respectively. Because a shock-capturing approach is used, the location of the moving 

mixed flow interface and that of the cell interface separating the free surface and pressurized flow cells 

(fixed grid) are identical at time tn. The flow variables at i+1/2 and time tn are UL
n and UR

n, respectively. 

These flow variables at time tn are already known from the previous time step computations. To estimate 
Ui+1/2

n+1, only Up2
n+1 need to be determined because Ui+1/2

n+1 = Up2
n+1. However, Up2

n+1 is related to Up1
n+1 

and wn+1. Thus, to determine Ui+1/2
n+1 the five variables (ρA)p1

n+1, (ρQ)p1
n+1, (ρA)p2

n+1, (ρQ)p2
n+1, and wn+1 

need to be estimated. The number of variables needed can be reduced in two as is shown next. 

The application of the concept of Riemann invariants along the characteristics uL+cL  and uL−cL in Fig. 
3, respectively, gives (León et al. 2006) 
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where θ = 2arccos(1−2y/d) and φ is (León et al. 2006)  
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In the system of Eqs. (16) Up1
n+1 = UL

n and φp1
n+1 = φL

n. Because Up1
n+1 = UL

n, only the three variables 
(ρA)p2

n+1, (ρQ)p2
n+1, and w

n+1 are needed to determine Ui+1/2
n+1. Since three equations are required the 

equations of conservation of mass, momentum and energy across the mixed flow interface can be used. 

However, from Fig. 3, p2 and R are connected by the characteristic uR − cR and therefore, one equation must 
relate p2 to R. Because it is difficult to quantify the energy losses in the conservation of energy equation, 

the equations of conservation of mass and momentum are used, namely Eqs. (12) and (13), where 

subscripts L and R must be replaced by p1 and p2, respectively (Fig. 3). To obtain the third equation, the 

concept of Riemann invariants is enforced along the characteristic s = uR − cR (Fig. 3), which gives 
 

 1
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1

2
)(ln  =)(ln  

++ −− n
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n
p

n
R

n
R AauAau ρρ  (18) 

The derivation of Eq. (18) is similar to that presented for Eqs. (8) and (9) by León et al. (2006) using the 

constant a instead of c. 

To reduce the number of equations by one, w was eliminated from Eqs. (12) and (13). For solving the 

resulting two equations, the Newton-Raphson method for nonlinear systems of equations was used. When 

implementing this approach for actual storm-sewer systems, the Newton-Raphson method may not always 

converge. In those cases a set of adaptive and more robust solvers such as HOMPACK or MINPACK may 

be needed. Having thus determined Up2
n+1 [(ρA)p2

n+1 and (ρQ)p2
n+1] and therefore Ui+1/2

n+1 (Ui+1/2
n+1 = 

Up2
n+1), the flux at the cell interface i+1/2 can be determined using the flux vector term in Eq. (3). 

For a supercritical free surface flow moving in the downstream direction, the concept of Riemann 
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invariants along the characteristics uL + cL and uL − cL in Fig. 3 can still be applied and as for subcritical 
flows Up1

n+1 = UL
n. The latter means that for a positive interface, the flux at the cell interface does not 

depend on the flow type in the free surface region.  

 

3.3 Negative interface propagating upstream 

In this case a negative mixed flow interface is moving upstream towards the pressurized flow region (Fig. 1 

b). The treatment for a negative interface propagating downstream is identical and will not be presented. It 
is noted from Fig. 1 (b), that the propagation of a negative interface results in the depressurization of the 

pressurized region. However, as mentioned earlier, depressurization does not occur if the piezometric head 

on the pressurized region drops below the pipe crown (Cardle 1984, Yuan 1984, or Cardle et al. 1989), but 

if the piezometric depth drops below a threshold value. For circular conduits this is about 0.84d (Yuan 

1984). Notice that the threshold value for depressurization is different to that of pressurization. Herein the 

pressurization of the free surface region is assumed to occur if the piezometric head exceeds y = yref. 

In a similar way to the case of a positive interface, the x-t diagram for a negative interface propagating 

upstream is shown in Fig. 4. Notice that the negative mixed flow interface overtakes the pressurized flow 

waves and that the free surface flow waves do not interact at all with the negative interface. These 

characteristics of a negative interface are different to those of a positive interface (shock-wave). 

A reader familiar with the solution of a Riemann problem can notice from Fig. 4 that to estimate 

Ui+1/2
n+1, only Up2

n+1 need to be determined. The reason is that if Up2
n+1 is known, an open-channel flow 

Riemann problem can be solved to estimate Ui+1/2
n+1 using as left, intermediate and right states, Up2, U* 

(star region) and UR, respectively (e.g., Toro 2001, León et al. 2006). However, Up2
n+1 is related to Up1

n+1 

and wn+1. Thus, five variables [(ρA)p1
n+1, (ρQ)p1

n+1, (ρA)p2
n+1, (ρQ)p2

n+1, and wn+1] need to be determined, 

and naturally five equations are required to determine these variables. In a way similar to the positive 

interface, the first two equations are obtained by enforcing the conservation of mass and momentum across 

the negative interface (Eqs. 12 and 13), where subscripts L and R must be replaced by p1 and p2, 

respectively. 

 

 
Figure 4 x-t diagram for a negative interface propagating upstream 

 

Note from Fig. 4 that the concept of Riemann invariants can be enforced only along the characteristic s 

= uL + cL. The characteristics s = uR−cR and s = uR+cR do not connect p2 and R, and the characteristic s = 

uL−cL cuts the mixed flow interface, and therefore the concept of Riemann invariants can not be enforced 
along these characteristics. Thus, for a negative interface, only one extra equation is obtained with this 
concept along the characteristic s = uL+cL). This third equation is given by 
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The derivation of Eq. (19) is similar to that presented in Appendix 1 by León et al. (2006) using the 
constant a instead of c. Experimental results show that the speed of a positive and negative interfaces is 

nearly constant (e.g., Cardle 1984, Cardle et al. 1989). Thus it is common to estimate the interface speed w 

at time n+1 using flow variables at the previous time step n (Song el al. 1983 or Cardle and Song 1988). 

Since wn+1 is computed explicitly, only four variables [(ρA)p1
n+1, (ρQ)p1

n+1, (ρA)p2
n+1 and (ρQ)p2

n+1] need to 

be determined and consequently only one more equation is needed. 

The energy equation across the interface was finally used as (Cardle 1984, Yuan 1984, Cardle and 
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Song 1988, Bourdarias and Gerbi 2007) 
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where hl = energy loss across a negative interface and (up1−w)/(up1−w) gives its correct sign. Note that 
Eq. (20) is written for single-phase flows. If considering air pressurization, the term H must be included in 

the left or right sides of Eq. (20), depending on which region is in free surface flow conditions. As is 

typically assumed, hl = 0 in the proposed model. The energy loss across a negative interface is negligible 

because this wave is similar to an expansion wave which is known to have negligible losses. Having 

determined (ρA)p2
n+1 and (ρQ)p2

n+1, (ρA)i+1/2
n+1 and (ρQ)i+1/2

n+1 can be estimated by solving an open-channel 
flow Riemann problem using as left, intermediate and right states (Fig. 4) Up2, U* and UR, respectively 

(Toro 2001, or León et al. 2006). For solving this Riemann problem, several solvers are available, such as 

the HLL, the two-rarefaction wave approximation, the linearized solver, among others (Toro 2001, 

LeVeque 2002, León et al. 2006, León 2006). Herein the HLL solver was used because its robustness for 

near dry-bed flows and because it handles sub- and supercritical flows automatically (Toro 2001). 

To show that effectively the HLL solver handles supercritical flows, consider for instance that the flow 

at the right of the mixed flow interface in Fig. 4 is supercritical moving to the right. In this case Ui+1/2
n+1 

[(ρA)i+1/2
n+1 and (ρQ)i+1/2

n+1] is equal to Up2
n+1 (Fig. 4), so that the flow variables at the cell interface xi+1/2 

are determined. Having thus determined Ui+1/2
n+1, the flux at the interface i+1/2 is determined using the flux 

vector term in Eq. (2) [free surface flows]. If the flow at the right of the mixed flow interface in Fig. 4 is 

subcritical, the flow variables in the intermediate region between the characteristics s = uR−cR and s = 
uR+cR need to be determined. The reader is referred to León et al. (2006) for the HLL method applied to 

circular conduits. Unlike other mixed flow models that were not formulated for negative interfaces if the 
flow in the free surface region is supercritical (Cardle 1984, Yuan 1984, Cardle and Song 1988, Bourdarias 

and Gerbi 2007), the proposed approach is able to simulate negative interfaces without restriction to the 

flow type in the free surface region. 

 

4 Threshold levels for piezometric depths 

As mentioned in the Introduction, when using a two-governing equation model and if simulating a pure free 

surface flow that is about to get pressurized, numerical instabilities, which may lead to program abortion, 

may occur, especially if pipe filling is slow. To overcome the numerical instabilities that may be produced 

during numerical pressurization (y = yref ), two threshold levels are defined. These are y = (1−tol1)yref and y 

= (1−tol2)yref subjected to 
 

 
refrefref yyy <)tol (1<)tol (1 21 −−  (21) 

 

where by trial and error tol1 was found between 10-3 and 10-8 and tol2 =10-14 if using double precision in the 

computations. For computations double or higher precision is suggested. For achieving convergence due to 
tol1, first use a high value for tol1 of e.g. 10-3 and then decrease gradually this value to e.g. 10-4. If the 

solutions for two values of tol1 are similar, then the solution has converged.  

For illustrating the use of the two defined threshold levels, three cases, which are depicted in Figs. 5 

(a), 5 (b) and 5 (c), are presented herein. For the first case illustrated in Fig. 5 (a) the flow at the old time 

step tn in cell i and its adjacent cells i−1 and i+1 are in free surface regime. If after updating the solution to 

cell i for tn+1, the piezometric depth in this cell falls between (1−tol1)yref and yref, the flow in cell i at the new 

time step tn+1 remains in free surface flow conditions with a piezometric depth equal to y = (1−tol1)yref. For 

the second case illustrated in Fig. 5 (b) the flow at old time time step tn in cell i and its adjacent cells i−1 
and i+1 are identical as in the first case. If after updating the solution at cell i for tn+1, the piezometric head 

exceeds yref, cell i at tn+1 is assumed to be pressurized (shaded region in Fig. 5 b). The third case, shown in 

Fig. 5 (c), corresponds to the pressurization of cell i adjacent to the positive interface (i+1/2). The flows at 

old time time step t
n in cells i and i+1 are in free surface and pressurized regime, respectively, and the 

positive interface i+1/2 is traveling to the left. Note that cell i (free surface flow conditions) may get 

pressurized due to the flow advected by the positive interface so that it may seem obvious that no constraint 

should be specified for the pressurization of this cell. However, if the piezometric head in cells i (y < yref) 
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and cell i+1 (y > yref) are similar, it may lead to numerical instabilities. Thus, if the piezometric head in cell 

i falls between (1−tol2)yref and yref, the flow in cell i at the new time step tn+1 remains in free surface flow 

conditions with a piezometric head equal to y = (1−tol2)yref. Because tol2 is very small, the constraint 
imposed does not affect significantly the accuracy of the results. As in the second case, if the piezometric 

head exceeds yref, the cell i at tn+1 is assumed to be pressurized. 

 

 
Figure 5 Threshold levels for piezometric head during numerical pressurization 

 

A similar approach to that presented for numerical pressurization can be implemented for numerical 

depressurization. However, in all the simulations performed no numerical instabilities associated to cell 

depressurization were experienced. 
 

5 Evaluation of model 

The purpose of this section is to evaluate the accuracy and robustness of the proposed model to simulate 

transient mixed flows in storm-sewers in single (pure liquid) and two-phase flow conditions (entrapment 

and release of air pockets). Four test cases are considered in this section. These are: 

 

    (1)  Experiments type A of Trajkovic et al. (1999) [Single-phase mixed flow].  

    (2)  Experiment of Vasconcelos et al. (2006) [Single-phase pressurized flow].  

    (3)  Experiments of Zhou (2000) [Air pocket entrapment with no air release]. 

    (4)  Experiments of Zhou (2000) [Air pocket entrapment with air release]. 

 
5.1 Experiments of Trajkovic 

Herein, the proposed model is used to reproduce a set of experiments conducted at the Hydraulics 

Laboratory, University of Calabria, by Trajkovic et al. (1999). The ability of the proposed model is tested 

to simulate a positive mixed flow interface (single-phase) reversing its direction and becoming a negative 

interface. The test setup consisted of a perspex pipe about 10 m long, having an inner diameter of 10 cm 

and a Manning roughness coefficient n = 0.008 m1/6 (Yen 1991). The initial conditions for this test were a 

constant discharge of 0.0013 m3/s, So = 2.7% resulting in supercritical flow with an approach flow Froude 

number of F = [u/(gh)1/2] = 2.9, an upstream sluice gate opening of e1 = 0.014 m, and the downstream 
sluice gate totally opened. The transient flow was generated after a rapid but not instantaneous closure of 

the downstream sluice gate causing the formation of an open channel surge moving upstream. This surge 

was continuously strengthen by the inflow and after few seconds became a positive mixed flow interface 
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moving upstream. After 30 s from gate closure, the gate was partially reopened. Different reopening values 

e2 were tested. Herein, the three values e2 = 0.008 m, e2 = 0.015 m, and e2 = 0.028 m are considered. 

Simulated (proposed and from Trajkovic et al.’s (1999) model) and measured pressure heads 0.6 m 

from the downstream gate for the three reopenings are shown in Fig. 6. The results for the proposed model 

were generated using 400 cells, a Courant number of C = [(u+c)∆t/∆x (free surface flow) or (u+a)∆t/∆x 

(pressurized flow)] = 0.80 and a = 500 m/s. The results of Trajkovic et al.’s model were generated using a 

pressure wave celerity of about 4 m/s. Even though the comparison of results between our model and that 

of Trajkovic et al. (1999) may not seem relevant because different pressure wave celerities were used, the 
results indicate that our model is robust for large pressure wave celerities. 

As can be observed from Fig. 6, the simulated piezometric head h for both numerical models have a 

good agreement with the corresponding tests measurements. In particular, the formation of the filling bore 

and its propagation velocity are accurately predicted. However, all the computed shock fronts are steeper 

than those measured, because of rapid gate closure, yet not instantaneous, as assumed in the simulations. 

Figure 6 also shows a drop in the piezometric head after the partial reopening of the downstream gate at t = 

30 s. In both simulations, an instantaneous partial reopening was assumed which caused a steeper front of 

the pressure drop as compared to the experimental results. The smaller pressure drop in both simulations 

may be in part due to the inaccuracies in representing the partial opening at the downstream boundary, 

where the orifice equation of Trajkovic et al. (1999) was used. 

For a reopening of 0.008 m (Fig. 6 a), after a small drop in the piezometric head, it continuously 

increased in both models and the test. This is because the pipe outflow was smaller than the inflow. For a 
reopening of 0.015 m (Fig. 6 b), a steady mixed flow interface was observed and computed for the test and 

proposed model in the pipe after the drop in piezometric head. For a reopening of 0.028 m (Fig. 6 c), the 

mixed flow interface traveled downstream for the test and the proposed model, because the outflow was 

larger than the inflow. It is acknowledged that the numerical results of Trajkovic et al. (1999) for a 

reopening of 0.015 and 0.028 m (Fig. 6 b and c) are not shown after about t = 32 s (shortly after partial gate 

reopening). Numerical instabilities were reported by Trajkovic et al. (1999) even tough a small wave 

celerity of ~ 4 m/s was used. 

According to Trajkovic et al. (1999), Vasconcelos et al. (2006), or León et al. (2009a), the results are 

almost independent of the pressure wave celerity when simulating mixed flows in a single pipe, in which 

the pressurized flow region is isolated and if there is no interaction of pressurized waves. This explains why 

researchers using very low pressure wave celerities obtained good agreement with tests when simulating 
mixed flows. However, as demonstrated by León et al. (2009b), the results depend significantly on the 

selection of the pressure wave celerity if there is an interaction of pressurized waves such as in multiple 

pipes. In the latter case only a pressure wave celerity equal to the water hammer wavespeed gives accurate 

results of the frequency and magnitude of pressurized transients. 

From Fig. 6 (b) and (c), it can be noted that shortly after the gate was reopened to 0.015 m or 0.028 m, 

the positive interface reversed its direction becoming a negative interface. This is particularly evident for a 

reopening of 0.028 m (Fig. 6 c). Also, the initial Froude number was about 2.9, corresponding to 

supercritical flow. As mentioned above, one of the present contributions is that the proposed model can 

simulate mixed flows without restriction of the flow type in the free surface region. Fig. 6 (b) and (c) 

demonstrates that our model simulates a negative interface for supercritical flow in the free surface region. 
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Figure 6 Measured and computed piezometric depths 0.6 m from downstream gate for type A tests of 

Trajkovic et al. (1999) for different reopenings  

 

5.2 Experiments of Vasconcelos et al. 

The purpose of this section is to test the ability of the proposed model to simulate sub-atmospheric 

pressures in pressurized flow regime (single-phase). The test considered was conducted at the University of 

Michigan and is reported by Vasconcelos et al. (2006). The setup consisted of an acrylic pipeline 14.33 m 

long, of 9.4 cm inner diameter. Its center portion was raised about 15 cm with respect to both ends to create 

conditions for the occurrence of sub-atmospheric pressures. The pipeline was connected at its upstream end 

by a box tank and by a cylindrical tank at its downstream end. The test considered was obtained by filling 

the system to a level of 0.30 m at the box tank and the system allowed to come to rest. Then a syphon 

outflow was suddenly initiated at the box tank at t = 0. The water level in the box tank then decreased to a 

level that created sub-atmospheric pressures at the pipe center portion. As the water level in the box tank 

dropped below the pipe crown just downstream of this tank, a complex flow pattern was developed. The 
flow just downstream of the box tank was then in sub-atmospheric conditions, and air flowed from the tank 

into the pipe. This constitutes a two-phase flow problem which is outside of the present scope. The 

intrusion of air flow in the test occurred at about t = 42.5 s, and in the model about 1.7 s earlier. Since this 

work is limited to single-phase flows, the comparison between model prediction and test results is only 

presented until just before the occurrence of air intrusion (t <  ≈ 40.8 s). 
If the present model is used to simulate fully pressurized flows, as in this test case, Aref = Af. Then, the 

2% reduction in hydraulic area for pressurized flows assumed for mixed flow conditions is eliminated. The 

pressure wave celerity used in the simulations was 300 m/s based on test measurements. The outflow was 

assumed constant at 0.45 l/s by observing the change in water volume over time. For estimating energy 

losses, Vasconcelos et al. (2006) used 0.012 m1/6. However Manning's equation is only applicable to fully 

rough flows. Since the tests were performed under laminar and transitional flow conditions with R <  
4,300, the Darcy-Weisbach equation would be better suited. For comparison, the numerical simulations 

were performed using both the equations of Manning and Darcy-Weisbach. 
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The simulated and tests velocities 9.9 m downstream of the box tank are shown in Fig. 7. The model 

predictions and tests for the piezometric head at 14.1 m downstream of the box tank are shown in Fig. 8. 

The simulated results were generated using 400 cells and C = 0.80. The results for the velocities (Fig. 6) 
show a good agreement between model and tests for the frequency of oscillations. However, the velocity 

amplitudes are overestimated by the model. As suggested by Vasconcelos et al. (2006), this may be in part 

because of assuming uniformity outflow. The differences between model prediction and tests may also be 

associated with the neglect of unsteady friction in the model. As can be seen from Fig. 7, the simulated 

results using the Manning and the Darcy-Weisbach equations are almost the same, the former being slightly 
more dissipative. The results for the piezometric head (Fig. 8) have a good agreement between model 

predictions and tests. The differences between the simulated and test piezometric heads may be explained 

similarly as for the velocities.  

The reason for the velocity oscillations (Fig. 7) may not be clear at first. However, by taking a look at 

the piezometric head plot (Fig. 8), the aforementioned oscillations start to make sense. The velocity at a 

given section is associated with the local difference in piezometric head at both sides of the section. In the 

test, the outflow from the upstream tank creates a variation of piezometric head in the whole pipeline. Since 

both tanks are relatively small and as the system tends to steady state, oscillations in the piezometric head 

are produced (Fig. 8). These in turn cause oscillations in the flow velocity. 

 

5.3 Experiments of Zhou: No air release 

The test setup of Zhou (2000) consisted of an horizontal galvanized steel pipe of variable length with an 

inside diameter of 35 mm connected to a pressure tank at its upstream end. Inflow to the pressure tank 

provided with a pressure regulator facilitated a range of approximately constant driving heads at the 

pressure tank. The galvanized steel pipe consisted of three sections, separated by three quarter-turn valves. 

These provided three different initial air volume and water column length scenarios. The downstream pipe 

end was either sealed to form a dead-end, or outfitted with a cap containing a centered sharp-edged orifice. 

The initial conditions for the tests with and without air release consisted of two columns of fluid separated 

by a valve, in which the upstream column was always filled with water (pressurized) and the downstream 

column (receiving pipe) was either filled totally with air at atmospheric pressure (dry receiving pipe) or 

partially filled with water (wet receiving pipe). The air-water flow interaction in all tests was achieved by 

manually opening the quarter-turn valve separating the two columns of fluid. The tests were repeated up to 

five times because the recorded data sets varied significantly. 
 

 
Figure 7 Measured and computed velocities 9.9 m from upstream end (Vasconcelos et al. 2006) 
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Figure 8 Measured and computed piezometric heads 14.1 m from upstream end for tests of Vasconcelos et 

al. (2006) 
 

Zhou (2000) defined three types of pressure oscillation patterns depending on the relative size of the 

leakage orifice. Type 1 (zero or relative small orifice size) pattern is characterized by the dominant effect of 

the air cushioning and a negligible effect of water hammer impact pressure. Type 2 (relative intermediate 

orifice size) pattern is characterized by similar effects of the air cushioning and water hammer impact 

pressure. Type 3 (relative large orifice size) pattern is defined by the dominant effect of water hammer 

impact pressure and a negligible effect of air cushioning. 

Due to space limitations only one test of Zhou (2000) with no air release is considered herein. This test 

resembles Type 1 pattern. The pipe length used by Zhou (2000) was 8.96 m, and 10 m for the test used in 

the next section (air release). The absolute pressure head in the pressure tank was for this test case Ho
*/Hb

* 

= 2.43, the initial water column length was 89% of the total pipe length (λo = 0.89), and y/d = 0.4 (wet 
receiving pipe). For the initial model conditions, the air volume above the free surface zone was an air 

pocket of zero gauge pressure head and atmospheric pressure air density. The simulated and measured 
absolute pressure head traces at the downstream pipe end are shown in Fig. 9. The simulated pressure head 

trace was obtained using 200 cells, a Courant number of C = 0.80, a Manning roughness coefficient of 
0.012 m1/6, and the experimentally obtained pressure wave celerity of a = 700 m/s. 

 
Figure 9 Experimental and simulated gauge pressure heads for Ho

*/Hb
* = 2.43, λo = 0.89, y/d = 0.4 

 

As is observed from Fig. 9, the simulated pressure head trace has a fair agreement with that of the test. 

In particular, the amplitude and frequencies of the pressure oscillations are reproduced fairly well. The 

differences between the numerical simulation and the test may be attributed to the simplicity of the 1-D 

model for simulating complex hydrodynamic-thermodynamic processes such as the dynamics of formation 

and propagation of air pockets in pipelines. It is acknowledged that the simulation results for air release and 

no air release were not significantly sensitive to the value of the pressure wave celerity used. 

 

5.4 Experiments of Zhou: With air release 
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Due to space limitations only one test of Zhou (2000) with air release is considered below of which the 

parameters were Ho
*/Hb

* = 4.57, λo = 0.8, y/d = 0 and do/d = 0.028. The pipe length used for this test was 10 
m. The simulated and measured absolute pressure head traces at the downstream pipe end are shown in Fig. 

10. The simulated pressure head traces were generated using 200 cells, C = 0.80, n = 0.012 m1/6, and a = 
1000 m/s, obtained experimentally.  

As is seen from Fig. 10, the simulated results fairly agree with the test measurements. As mentioned 

above, the proposed model gives a fair agreement with tests only for no air release or under small air 

release conditions. For intermediate or large release conditions (do/d  > ~ 5%), the air-water flow is far from 

being one-dimensional (Zhou et al. 2002) so that a 1-D model can not be used. If the proposed model is 

used for intermediate or large release conditions, large discrepancies with test data result are obtained (not 
shown). 

 
Figure 10 Experimental and simulated gauge pressure heads for Ho

*/Hb
* = 4.57, λo = 0.8, do/d = 0.028, y/d = 

0) 

 

6 Conclusions 

A Finite Volume model was built upon earlier work with the aim of simulating free surface flows, 

pressurized flows and their simultaneous occurrence in single and two-phase flow conditions. This research 

presents part of this model for simulating mixed flows in single and two-phase flow conditions. In our 

model, the free surface region is simulated using the modified 1D Saint-Venant equations accounting for 

air pressurization, the pressurized region is simulated using the classical 1D compressible waterhammer 

equations and open channel-pressurized flow interfaces are simulated by enforcing mass, momentum and 

energy relations across open channel-pressurized flow interfaces. The accuracy and robustness of the 
proposed model are investigated using four test cases. The key results are: 

 

(1)   The proposed model accurately describes complex flow features, such as positive and negative 

mixed flow interfaces, interface reversals and open channel surges. In particular, the model simulates 

negative interfaces in mixed flow conditions having supercritical flow in the free surface region. 

This is achieved by using the HLL-Riemann solver in the free surface region that automatically 

handles subcritical and supercritical flows. It appears that no mixed flow model was formulated for 

negative interfaces for supercritical flow in the free surface region. The model also simulates 

negative pressures in pressurized flow regime. 

(2)   In two-phase flow conditions, the proposed model reproduces with fair accuracy the frequency and 

amplitude of the pressure oscillations only for small air release conditions. For intermediate or large 

release conditions, the air-water flow is far from being one-dimensional so that a 1-D model can not 
be used. If the proposed model is used for intermediate or large release conditions, large 

discrepancies with the test data result. 

(3)    Unlike previous approaches that rely on the speed of open channel-pressurized flow interfaces at the 

boundaries of an air pocket for computing the volume change of the air pocket, the volumetric 

change is herein computed using the net flow discharge flux evaluated at the air pocket boundaries 

which leads to a robust model. 

(4)   Overall, the proposed model is robust and capable of simulating transient flows ranging from dry-
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bed flows, to free surface flows, to partly free surface-partly pressurized flows, to fully pressurized 

flows in single and two-phase flow conditions. Furthermore, it can simulate any transient mixed flow 

condition for realistic pressure wave celerities. 
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Notation  
a = pressure wave celerity 

A = hydraulic area 

c = gravity wave celerity 

C = Courant number 

d = conduit diameter 

F = Froude Number 

F = flux vector 
g = acceleration due to gravity 

h = piezometric depth 

H = gauge air pressure head 

)/(= gph ρ  

k = heat capacity ratio 

m = mass of air 

n = Manning roughness coefficient 

p = pressure acting on center of gravity 

p  = average pressure of water column 

Q = discharge 

R = Reynolds number  
S = vector containing source terms 

s = wave speed 

T = top width 

t = time 

U = vector of flow variables 

u = water velocity 

V = volume of air pocket 

w  = speed of mixed flow interface 

x = longitudinal coordinate 

y  = piezometric depth above channel bottom 

Y = expansion factor 
 

Superscripts  
n = computational time level  

*  = absolute values (e.g., absolute pressure) 

 

Subscripts 
a = refers to air 

b = atmospheric conditions 

f = pressurized flow state 

i = mesh point location in x direction 

p1 = left side of mixed flow interface 
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p2 = right side of mixed flow interface 

ref = reference state 

w = water 

 

References 

Arai, K., Yamamoto, K. (2003). Transient analysis of mixed free-surface-pressurized flows with modified 
slot model 1: Computational model and experiment. 4th ASME-JSME Joint Fluids Engrg. Conference, 

Honolulu HW, CD-ROM.  

Bourdarias, C., Gerbi, S. (2007). A finite volume scheme for a model coupling free surface and pressurised 

flows in pipes.  J. Comp. Applied Mathematics 209(1), 109-131. 

Bryson, A.E. (1964). Waves in fluids. Videorecording presented by National Committee for Fluid 

Mechanics Films; produced by Educational Services, Chicago IL. Encyclopedia Britannica 

Educational Corporation. 

Capart, H., Sillen, X., Zech, Y. (1997). Numerical and experimental water transients in sewer pipes.  J. 

Hydraulic Res. 35(5), 659-672. 

Cardle, J.A. (1984). An investigation of hydraulic transients in combination of free surface and pressurized 

flows.  PhD thesis. Dept. of Civil and Mineral Engng., Univ. of Minnesota, Twin Cities MN. 
Cardle, J.A., Song, C.C.S. (1988). Mathematical modeling of unsteady flow in storm sewers.  Intl. J. 

Engng. Fluid Mechanics 1(4), 495-518. 

Cardle, J.A., Song, C.C.S., Yuan, M. (1989). Measurements of mixed transient flows.  J. Hydraulic Engng. 

115(2), 169-182. 

Guinot, V. (2003).  Godunov-type schemes. Elsevier, Amsterdam NL. 

Hamam, M.A., McCorquodale, J.A. (1982). Transient conditions in the transition from gravity to 

surcharged sewer flow.  Canadian J. Civ. Engng. 9(2), 189-196. 

León, A.S. (2006). Improved modeling of unsteady free surface, pressurized and mixed flows in storm-

sewer systems.  PhD thesis. Dept. of Civil and Env. Engng., Univ. of Illinois at Urbana-Champaign, 

Urbana IL. 

León, A.S., Ghidaoui, M.S., Schmidt, A.R., García, M.H. (2006). Godunov-type solutions for transient 

flows in sewers.  J. Hydraulic Engng. 132(8), 800-813. 
León, A.S., Ghidaoui, M.S., Schmidt, A.R., García, M.H. (2007). An efficient finite-volume scheme for 

modeling water hammer flows. Contemporary modeling of urban water systems 15, 411-430, W. 

James, ed. CHI, Toronto, Canada. 

León, A.S., Ghidaoui, M.S., Schmidt, A.R., García, M.H. (2008). An efficient second-order accurate shock 

capturing scheme for modeling one and two-phase waterhammer flows. J. Hydraulic Engng. 134(7), 

970-983. 

León, A.S., Ghidaoui, M.S., Schmidt, A.R., García, M.H. (2009a). Application of Godunov-type schemes 

to transient mixed flows.  J. Hydraulic Res. 47(2), 147-156. 

León, A.S., Liu X., Ghidaoui, M.S., Schmidt, A.R., García, M.H. (2009b). Boundary conditions for 

modeling mixed free surface-pressurized transient flows.  J. Hydraulic Engng. Tentatively accepted. 

León, A.S., Ghidaoui, M.S. (2009). Discussion of Numerical oscillations in pipe-filling bore predictions by 
shock-capturing models. J. Hydraulic Engng., in print. 

LeVeque, R.J. (2002).  Finite volume methods for hyperbolic problems. Cambridge Press, Cambridge UK. 

Martin, C.S. (1976). Entrapped air in pipelines.  Proc. 2nd Intl. Conf. Pressure Surges, 15-28. British 

Hydromechanics Research Assoc., Cranfield UK.  

Nujic, M. (1995). Efficient implementation of non-oscillatory schemes for the computation of free-surface 

flows.  J. Hydraulic Res. 33(1), 101-111. 

Politano, M., Odgaard, A.J., Klecan, W. (2007). Case study: Numerical evaluation of hydraulic transients 

in a combined sewer overflow tunnel system.  J. Hydraulic Engng. 133(10), 1103-1110. 

Sanders, B.F. (2001). High-resolution and non-oscillatory solution of the St. Venant equations in non-

rectangular and non-prismatic channels.  J. Hydraulic Res. 39(3), 321-330. 

Song, C.C.S., Cardle, J.A., Leung, K.S. (1983). Transient mixed-flow models for storm sewers. J. 

Hydraulic Engng. 109(11), 1487-1503. 

Toro, E.F. (2001).  Shock-capturing methods for free-surface shallow flows. Wiley, Chichester UK. 

Trajkovic, B., Ivetic, M., Calomino, F., D'Ippolito, A. (1999). Investigation of transition from free surface 

to pressurized flow in a circular pipe.  Water Science and Techn. 39(9), 105-112. 

elizabethwalker
Text Box
This is an electronic version of an article published in Journal of Hydraulic Research, 48(1). Journal of Hydraulic Research is available online at: http://www.informaworld.com/smpp. DOI: 10.1080/00221680903565911



  

Vasconcelos, J.G. (2005). Dynamic approach to the description of flow regime transition in stormwater 

systems.  PhD Thesis. Dept. of Civil and Env. Engng., University of Michigan, Ann Arbor MI. 

Vasconcelos, J.G., Wright, S.J., Roe, P.L. (2006). Improved simulation of flow regime transition in sewers: 

Two-component pressure approach.  J. Hydraulic Engng. 132(6), 553-562. 

Wang, K-H., Shen, Q., Zhang, B. (2003). Modeling propagation of pressure surges with the formation of an 

air pocket in pipelines.  Computers and Fluids 32(9), 1179-1194. 
Yen, B.C. (1991). Hydraulic resistance in open channels. Channel Flow Resistance: Centennial of 

Manning's Formula, 1-135. Water Resources Publications, Littleton Co, USA. 

Yuan, M. (1984). Pressurized surges.  MSc Thesis. Dept. of Civil and Mineral Engng., Univ. of Minnesota, 

Twin Cities MN. 

Zhou, F. (2000). Effects of trapped air on flow transients in rapidly filling sewers.  PhD Thesis. Dept. of 

Civil and Env. Engng., Univ. of Alberta, Edmonton CA. 

Zhou, F., Hick, F.E., Steffler, P.M. (2002). Observations of air-water interaction in a rapidly filling 

horizontal pipe.  J. Hydraulic Engng. 128(6), 635-639. 

elizabethwalker
Text Box
This is an electronic version of an article published in Journal of Hydraulic Research, 48(1). Journal of Hydraulic Research is available online at: http://www.informaworld.com/smpp. DOI: 10.1080/00221680903565911


	A Robust Two-Equation Model for Transient-Mixed Flows
	Microsoft Word - JHR P3556_Final_just_in_case_check

