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Energy-Efficient k-Coverage for Wireless Sensor
Networks with Variable Sensing Radii

Jiong Wang Sirisha Medidi Muralidhar Medidi
School of Electrical Engineering and Computer Science Department of Computer Science

Washington State University, Pullman, WA Boise State University, Boise, ID

Abstract— Wireless Sensor Networks (WSNs) consist of
spatially-distributed autonomous sensors that can cooperatively
monitor physical and environmental conditions. Because of sen-
sors’ resource-constraints in terms of size, power, and band-
width, one of the fundamental objectives in WSNs is improving
energy-efficiency. In this paper, utilizing sensors with variable
sensing radii, we propose a group-based technique to obtain
energy-efficient k-coverage based on our previous work with
the Delaunay-Triangulation-based 1-coverage algorithm. Our
sensing-radii optimization technique ensures full coverage and
attains nearly-optimal energy consumption in sensing. Further-
more, our ns-2 simulations confirm that the group-based k-
coverage reduces sensing energy consumption and maintains a
sound coverage ratio for reliable surveillance.
Key words: wireless sensor networks, coverage, energy-efficiency

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are collections of large
numbers of nodes with radio communications, sensing, and
low-power processing capabilities. One of the fundamental
objectives of WSNs is to provide continuous surveillance
to ensure that each point therein is monitored by at least
one sensor. In order to provide better accuracy and fault-
tolerance, some applications, such as emergency response,
military surveillance, and disaster-recovery, require k-coverage
(k > 1), which means that each point in the target area should
be monitored independently by k sensors.

Due to sensors’ energy constraints, it is important to dynam-
ically configure WSNs by using sleep/wakeup scheduling, or
by varying sensing/transmission radii. Such dynamic configu-
ration helps to both minimize energy consumption and ensure
required quality of surveillance [22]. Large sensing radii
increase energy consumption because they require more so-
phisticated filtering and signal-processing methods to improve
the signal-to-noise ratio and achieve the desired confidence
level [27]. Thus, adjustable sensing radii allow for reduced
energy consumption by eliminating redundant coverage.

Reliable surveillance and energy-efficiency can be guar-
anteed by optimizing sensing radii. Due to resource con-
straints and the wide-spread deployment of sensor networks,
a distributed algorithm which achieves global optimality and
minimal overhead is preferred. To address these problems,
we propose a light-weight, distributed algorithm for dynamic
configuration of sensing radii with the following features:

• A distributed algorithm based on one-hop information
• Guaranteed k-coverage
• Energy-efficiency in sensing

In our previous work [21], we configured sensors’ sensing
radii to maintain efficient 1-coverage based on Delaunay
Triangulation. In this paper, we are proposing a group-based
technique to obtain k-coverage with the same energy-efficiency
objectives. Furthermore, our k-coverage algorithm can be
applied to any 1-coverage techniques to easily configure k-
coverage based on local topology.

The rest of this paper is organized as follows: In Section
II, we provide a summary of related work. In Section III,
we summarize relevant details of our Delaunay-Triangulation-
based i-coverage technique from [21]. In Section IV, we pro-
pose two grouping algorithms to obtain k-coverage and energy-
efficiency. We evaluate the performance of our techniques
based on the ns-2 simulator in Section V and conclude this
paper in Section VI.

II. RELATED WORK

Some of the earliest research on energy-efficient coverage
was done by Slijepcevic and Potkonjak who proposed a NP-
complete problem called Set K-Cover [17]. Their algorithm
selects several mutually-exclusive sets of sensor nodes, with
each set covering an entire area. Hsin and Liu [9] discuss
node-scheduling and the tradeoff between random and co-
ordinated sleep algorithms based on low-duty cycle sensors.
Tian and Georganas [19] proposed a scheduling mechanism
wherein a node becomes active only if its “sponsored area”
is covered by its neighboring nodes; and TGim [7] extended
Tian and Georganas’ mechanism by considering the real-
istic signal propagation model. Zhang and Hou discuss a
triangulation-based coverage, where equilateral triangulation
achieves the best energy-efficiency in sensing [11]. Khan
et al. proposed a Mobile Traversal Algorithm to form an
equilateral triangulation-based coverage using mobile sensors
[2]. Coverage has been approached from different perspectives
by Meguerdichian et al. [18], who developed a technique that
sought maximal breach and maximal support paths by using
the Voronoi Diagram.

The use of k-coverage to improve accuracy and fault-
tolerance is examined by various other researchers [8], [10],
[23], [26]. Huang and Tseng developed a sufficient and nec-
essary condition for k-coverage [10]. In order to configure the
networks for k-coverage, Wang et al. proposed an eligibility
algorithm to determine whether it is necessary for certain
nodes to become active [23]. Gupta, Zhou, and Das designed
a greedy k-coverage algorithm based on the “K-Benefit” value
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Fig. 1. Triangulation-based Sensing Radii Optimization

of each candidate path [26]. Hefeeda and Bagheri illustrated
the same problem as a set system in which optimal hitting sets
correspond to optimal k-coverage solutions [8].

Recently, researchers have recognized the need to develop
integrated approaches for both coverage and connectivity.
PEAS [25] addresses that challenge by using a “probabilistic
probing.” Shakkottai, Srikant, and Shroff [16] examine the
probabilistic bounds that both coverage and connectivity can
be attained if unreliable sensor nodes have been deployed on
a given grid. Wang et al. [23] show that full coverage implies
connectivity if the transmission radius is at least two times
greater than the sensing radius.

To further reduce redundant coverage, sensors with variable-
sensing radii have been used. Wu and Yang [24] propose a
coverage algorithm that uses sensors with maximum, medium,
and small-sensing radii according to network topology. Cardei
et al. [3] propose an algorithm and a model of continuously-
adjustable sensing radii in order to identify mutually-exclusive
sensor covers with optimal sensing ranges. Other approaches
to this problem include those by Dhawan et al. [6] and Zhou
et al. [27] based upon Linear Programming and the Voronoi
Diagram, respectively.

Our approach is distinct from that of other researchers
in several respects. First, we use a group-based technique
to extend any existing 1-coverage algorithm into k-coverage.
Secondly, we achieve energy-efficiency and guarantee full k-
coverage with simple heuristics and only one-hop information.
Thirdly, our approach can be combined with other scheduling-
based coverage techniques [17], [19] by adjusting the sensing
radii within each mutually-exclusive set of sensor nodes.

III. DELAUNAY-TRIANGULATION-BASED 1-COVERAGE

For the sake of completeness we summarize relevant details
of our paper on 1-coverage: a distributed algorithm to ap-
proximate Delaunay Triangulation and a heuristic to optimize
sensing radii for energy-efficiency [21].

To optimize sensing radii locally, a triangulation is used
to construct a planar graph based on sensor deployment. A
Responsible Area (RA) is represented by a triangle in the graph
(Fig. 1-a). Each triangularly-shaped RA requires coverage to
be provided by a single sensor at each of the three vertices of
the triangle, for a total of three sensors per RA. To optimize
sensing coverage locally based on each RA, triangulation is
essential. For sensor with identical sensing radius, rs (Fig. 1-
b), Zhang and Hou [11] showed that the minimal redundant
coverage is obtained with equilateral triangulation, where each

Fig. 2. Construction of DT Based on One-hop Neighbors

edge is
√

3rs. This requires consistent distances between
adjacent nodes, which is not feasible in random deployment of
sensors. With that in mind, we chose Delaunay Triangulation
to achieve a nearly-optimal result for coverage.

The distributed algorithms to compute Delaunay Triangu-
lation proposed by Li et al. [12] and Liebeherr, Nahas, and
Si[13] require the sensors to have knowledge of nodes located
multiple hops away, or had a slow convergence time. We
proposed a lightweight algorithm that locally approximates DT
using only one-hop neighbor information.

A. One-Hop Approximation of Delaunay Triangulation

Delaunay Triangulation (DT) [4], the dual of the Voronoi
Diagram, has the following characteristics:

• “Fat triangles,” in the sense that the minimum angle of
any Delaunay triangle is as large as possible; and

• The Empty Circle Property, defined as a circle that runs
through the vertices of any triangle with no other vertex
inside the circle.

We illustrate our algorithm with an example. Our algorithm
is based on the centralized edge-flipping algorithm [4]. In
our algorithm, each node maintains a list of its one-hop
neighbors (NeighborList). After an arbitrary triangulation
is constructed (Fig. 2-a), each node independently tests its
adjacent triangles to determine whether they all satisfy the
Empty Circle Property. If an adjacent triangle cannot satisfy
the Empty Circle Property, the corresponding edge is flipped.
For example, in Fig. 2-b, �ACD is, at first, a non-Delaunay
Triangle because point B lies inside of �ACD’s circumcircle.
Then, AC is flipped to DB, and point C is deleted from A’s
NeighborList. The result is the formation of the Delaunay
Triangle �ABD as shown in Fig. 2-c. In Fig. 2-d, �ADE
is identified as a non-Delaunay Triangle and, similarly, to
make the conversion, AE is flipped to DF and point E is
eliminated from A’s NeighborList. The final result is the
creation of �ADF , with no other points located inside its
circumcircle as shown in Fig. 2-e. The edge-flipping process
continues until A’s adjacent triangles can all be classified as
Delaunay Triangles.

The one-hop approximation of DT can be implemented
easily on sensors with low communication and computation
overhead; however, with only one-hop information, the re-
sulting triangulation may differ from the traditional DT. We
showed that our local approximation of DT is equivalent
to the traditional DT, provided that: (1) the area can be
completely covered by the maximum sensing radius; and (2)
the sensors satisfy 2Rs ≤ Rx, where Rs and Rx represent
the maximum sensing radius and the maximum transmission
radius, respectively [21].
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Condition (1) is a basic requirement for any reliable
surveillance and condition (2) holds for most hardware. For
example, MICA sensors have a sensing range of 2-6m and
a transmission range of 30m [1]. Furthermore, Rx ≥ 2Rs is
commonly assumed to obtain connectivity with full coverage
[11], [23]. Our algorithm obtains an accurate DT when the
above conditions are satisfied.

B. DT-Based Sensing Radii Optimization

We used a local heuristic to optimize sensing radii based on
each triangle and a quadratic sensing energy model (kr2

s where
rs is the sensing radius and k is a constant). We showed that
the energy consumption of the three sensors at the vertices of
each triangle is minimized when their sensing discs intersect at

the circumcenter of the triangle (
3∑

j=1

xj/3,
3∑

j=1

yj/3) [21]. The

same principle can also be applied to other energy models.
Our heuristic for sensing radii optimization is as follows:

• Step 1: Each sensor calculates the optimal sensing radii
for each of its adjacent Delaunay Triangles;

• Step 2: Each sensor chooses the largest optimal sensing
radius among those calculated in Step 1.

Full coverage is a fundamental requirement for reliable
surveillance. In Step 2 of our heuristic, local coverage is
attained by selecting the largest optimal radius among all
adjacent triangles; however, that selection does not necessarily
ensure full coverage across the target area. We showed that
our DT-based radii optimization can guarantee full coverage
if there is no “hole” in the initial deployment [21].

IV. GROUP-BASED k-COVERAGE

For applications in military surveillance and emergency
response, k-coverage (k > 1) is usually required in order
to obtain more accurate data and better fault-tolerance. In a
navigation system where the sensor networks are deployed to
estimate the location of a moving object, 2-coverage has to
be guaranteed since two measurements from different sensors
to the same object are required for triangulation [14]. One
way to provide 2-coverage is a partition of the network with
2 mutually exclusive groups where each group has a complete
coverage. To obtain the best energy efficiency, the partition of
each group has to be fair and adaptive to the local topology.
Therefore, we propose two efficient solutions based on the
probability and local topology. Features of our technique are:

• compatible with existing 1-coverage algorithms;
• capable of maintaining coverage and energy-efficiency;
• easily configurable with k.

The general concept of our group-based technique involves
separating all sensors into k mutually exclusive groups. Each
group uses the DT-based 1-coverage algorithm to optimize
its sensing range. Then, by layering the k groups, k-coverage
can be achieved. During DT construction, each node will only
keep in its NeighborList the neighbor nodes with the same
group I.D. as itself; then, all k layers of 1-coverage can be
simultaneously generated by k groups through the DT-based
optimization. In order to easily adjust k for various service

requirements, a simple, distributed grouping technique is nec-
essary. Furthermore, in order to maintain energy-efficiency and
load-balancing, all k groups should have the same number of
sensors and the same distribution across the target area.

A. Probability-Based Approach

The probability-based algorithm is a straightforward ap-
proach to form k independent groups. It allows each sensor
to select any group I.D. between 1 and k with the same
probability of 1/k. To study the distribution of each group, we
assume that sensors are deployed according to the Homoge-
nous Poisson Point Process (HPPP) with density λ. HPPP is
commonly used in modeling sensor networks for their initial
placement and it is a standard model to investigate point
processes that are neither completely random nor regular.Then,
we will show that each group of sensors follows the same
distribution with density denoted by λ/k and the expectation
of the group size equals n/k (Theorem 1 & 2). The technique
we used in our proofs can be found in similar stochastic
process and its applications, such as [5].
Definition 1: Homogenous Poisson Point Process (HPPP): On
a two-dimensional space Ω with points, N(A) is a counting
measure (number of points) of a bounded Borel set A (A ∈ Ω)
and σ(A) denotes the Lebesgue measure of set A. The spatial
distribution of points across Ω is an HPPP if and only if: (1)
N(A) is the Poisson Distribution; and (2) N(Ai) and N(Aj)
are independent for any disjoint set Ai and Aj .
Lemma 1: If the original point process is an HPPP, for group
l(l ∈ 1..k), Nl(Ai) and Nl(Aj) are independent for any
disjoint Ai and Aj .

Due to the HPPP, N(Ai) and N(Aj) are independent for
any disjoint Ai and Aj . Because each node randomly joins
the group, Nl(Ai) and Nl(Aj) (l ∈ 1..k) are still independent
for any disjoint Ai and Aj ; hence, Lemma 1 holds.
Lemma 2: If the original point process is an HPPP with density
λ, then Ni(A)(A ∈ Ω) is the Poisson Distribution with density
λ/k for group i(i ∈ 1..k).
Proof: We assume that 1− p is the probability of any point in
the original distribution joining group i; therefore:

Pr(Ni(A) = n) =
∞∑

j=0

(Pr(N(A) = n + j)
(

n + j

n

)
(1 − p)npj)

=
∞∑

j=0

(
e−λ|A|(λ|A|)n+j

(n + j)!
(n + j)!

n!j!
(1 − p)npj)

=
e−λ|A|(λ|A|)n

n!
(1 − p)n

∞∑
j=0

(λ|A|p)j

j!

=
e−λ|A|(λ|A|)n

n!
(1 − p)neλ|A|p

=
e−(1−p)λ|A|((1 − p)λ|A|)n

n!
=

e−ρ|A|(ρ|A|)n

n!
(1)

According to Equation (1), Ni(A) is a Poisson Distribution
with density ρ where ρ = (1 − p)λ. Because 1/k is the
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probability of each sensor joining group i, Ni(A) is a Poisson
Distribution with the density of λ/k for group i. �
Theorem 1: If the original point process is an HPPP with
density λ and each sensor randomly joins a group i ∈ 1..k
with the probability of 1/k, then group i(i ∈ 1..k) is also an
HPPP with density λ/k.
Proof: According to Definition 1, a point process is an HPPP
if and only if conditions (1) and (2) are satisfied. Therefore,
based upon Lemma 1 & 2, group i(i ∈ 1..k) is an HPPP with
density λ/k. �
Theorem 2: If sensors randomly join group i(i ∈ 1..k) with a
probability of 1/k, then all groups have the same expectation
of group size.
Proof: 1/k is the probability of each sensor joining group i.
Suppose ξ is the random variable representing the size of group
i, and the number of points in Ω is N . According to Binomial
Distribution, PB(ξ = x) =

(
N
x

)
(1/k)x(1 − 1/k)N−x, and

hence E(ξ) = N/k. So, the expectation of the group size is
the same for all groups. �

The probability-based algorithm ensures the same group
size and distribution probabilistically by assuming an HPPP
for initial sensor deployment; however, it may not be feasible
to place sensors in a certain regular manner (i.e. HPPP).
Furthermore, information on the initial sensor placement may
not be available and the topology of sensor networks may
be dynamically changed into any random formation due to
various environmental conditions and unbalanced work-loads.
Additionally, in order to obtain better performance in energy-
efficiency and load-balancing, more deterministic properties in
group size and distribution are preferred.

B. Grid-Based Approach

Different from the complete random group-formation in
the probability-based approach, an alternative way of form-
ing groups is by using full coordination among all sensors.
However, such an approach is impractical in sensor networks
due to resource constraints and scalability issues. Thus, we
propose a grid-based approach, which utilizes limited coordi-
nation among one-hop neighbors in order to obtain a more
deterministic property under arbitrary network topology.

In the grid-based approach, we apply the randomized group
assignment on a much smaller scale than the probability-based
approach. The basic idea is to divide the area into contiguous
cells where each cell contains k or fewer sensors. Then, we
randomly assign group I.D.s (from 1 to k) to sensors within
each cell. The group size is N/k for a total of N sensors, if all
cells contain exactly k sensors. Furthermore, because WSNs
are generally assumed to be densely-deployed, each cell will
be small enough to allow the grid-based algorithm to attain the
same distribution for each group. For example, as illustrated in
Fig. 3-a, where sensors are more densely-deployed, the cells
are much smaller than Fig. 3-b. Then for any arbitrary area
A (i.e. the circle in Fig. 3-a and b) and two groups Gi &
Gj , the relative variation between those two group sizes in
A is |Gi|A−|Gj |A

|Gi|A . Because only those cells that intersect A’s
border (shaded cells) will contribute to the variation of group

Fig. 3. Grid Formation with Different Node Densities

Fig. 4. Cell-Merging Process (k = 3)

sizes, the sizes of all groups in A are almost equal in Fig. 3-
a. Therefore, as long as the network is densely-deployed, the
grid-based approach can obtain desirable properties in group
size and distribution under any sensor topologies.

Our grid-based algorithm consists of two phases. The first
phase is to construct the grid with each cell containing no
more than k sensors. In the second phase, a random method
or heuristic is used to assign group I.D.s based on each cell.
Obviously, if division is continued until each cell contains zero
or one sensor, the grid-based approach becomes similar to the
probability-based approach.

Grid construction by division has two drawbacks. First, it is
slow because the initial cell (the entire target area) has to be
divided repeatedly into smaller cells until each cell contains
only k or fewer than k sensors. Secondly, it is not feasible to
distributively implement division-based construction with local
topology information. To alleviate those problems, we use a
merging process in order to distributively construct the grid in
a short time from one-hop information. The grid is initially
pre-defined with cells of the same size. Those cells should be
small enough that none of them contain more than k sensors
(Fig. 4-a). Each sensor identifies its residual cell based on its
location information which is available through GPS or other
localization mechanisms (for example, see [15]). If the number
of sensors in four quadrants is fewer than or equal to k, then
those four quadrants are merged into one rectangular cell (Fig.
4-b). By continuously merging four smaller quadrants into one
larger cell, the number of sensors contained in all cells in the
final grid will exactly equal k, or nearly k (Fig. 4-c). If the
network is densely deployed, cells will stop growing before
their sizes exceed one-hop range; thus, the merging process
can quickly compute the grid with local information.

After the grid is formed, each cell will contain exactly k
or fewer than k sensors. In the second phase, each sensor’s
group I.D. will be determined within its rectangular cell. For
a cell S and |S| representing the number of sensors in S,

1) If |S|=k, 1..k is randomly assigned to k nodes in S;
2) If |S|<k, all sensors in S join groups from 1..k with a

probability that is inversely proportional to the size of
each group in their one-hop neighborhood.
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Fig. 5. Grid-Based Group Assignment for 3-Coverage

In Fig. 5 (k=3), cell S1 has three sensors, thus it randomly
assigns each sensor with a group I.D. from 1..3 according to
rule (1). Cell S2 has one sensor A, hence sensor A uses rule
(2) to join group 1 based upon group sizes in its neighborhood.
Within sensor A’s one-hop range, there is one sensor in group
1, three sensors in group 2, and two sensors in group 3; so
sensor A will have the highest probability of joining group 1.

V. PERFORMANCE EVALUATION

Our DT-based 1-coverage algorithm and group-based k-
coverage algorithm were implemented using the ns-2 simula-
tor. To evaluate their energy-efficiency and quality of coverage,
we used standard metrics as in [24], [27], including average
sensing radius (Meters), average sensing power (Watts), and
coverage ratio (%). For the simulation setup, we used 50 ∼
250 randomly-deployed sensors on a 50×50 grid. We adopted
a similar quadratic energy model (0.01r2

s ) and maximum
sensing radius (10m and 20m) from [3]. Each scenario was
simulated for 500 seconds and results were collected from 20
trials with randomly-generated topologies.

A. 1-Coverage Algorithm

To evaluate our DT-based 1-coverage algorithm, we com-
pared it to Wu’s Variable Sensing Range algorithm (VSR)
[24], which we also implemented in the ns-2. Our previous
work [21] has studied the DT-based 1-coverage technique
regarding to its performance on energy balancing and lifetime.
In this paper, we focus on the quality of coverage and energy
efficiency. We collected the coverage ratios, and the averages
of the sensing radii and sensing energy based on two sets of
maximum sensing radius (10m and 20m) in order to show
the tradeoff between density, energy consumption, coverage
ratio. The larger sensing radius may be advantageous for lower
density; but with higher density, it consumes much higher
energy and may not provide significantly better coverage
than the smaller sensing radius does. As in Fig. 6-c, sensors
with 20m radius has coverage improved by less than 0.2%
compared to sensors with 10m radius when more than 200
nodes are used in our topology; however, this marginal gain is
obtained at the cost of almost 3 times more of average energy
consumption.

Compared with our DT-based algorithms, VSR yielded a
nearly constant average sensing radius as density increases
with the 10m maximum sensing radius (in Fig. 6-a). VSR’s
behavior can be explained by its use of static radii assign-
ments which are based on predetermined locations; however,

with a dynamic radii optimization, DT-based algorithms can
effectively reduce the sensing radius with various network
densities. A similar behavior can be observed with a maxi-
mum sensing radius of 20m, where the DT-based algorithm
reduces the average sensing radius in VSR by almost 10%. In
Fig. 6-b, with a quadratic sensing model of 0.01r2

s , a more
apparent energy-savings can be observed using the DT-based
algorithm. Although VSR shows better performance in the
case of 25 nodes and 10m maximum sensing radius (shown
in Fig. 6-a and b), its coverage rate, at the same density and
maximum sensing radius, is less than 65% (shown in Fig.
6-c). In contrast, the DT-based algorithm yields considerable
improvements in surveillance quality as it provides more than
85% coverage at all density levels.

B. k-Coverage Algorithms

Since there are no other k-coverage algorithms based on
optimizing sensors’ sensing radii, we evaluate only the group-
based k-coverage algorithms using DT-based sensing radii
optimization. Both probability and grid-based approaches are
compared with up to 3-coverage. Our evaluation metrics
included the coverage ratios and the averages of the sensing
radii and sensing energy. In Fig. 7-a, a correlation is observed
between the levels of coverage and sensing radii, where a
higher level of coverage requires larger sensing radii. This
is because node density decreases in each group with a higher
level of coverage. Additionally, in the process of reaching 2-
coverage, the grid-based algorithm resulted in a better average
radius than the probability-based algorithm. The grid-based
algorithm obtained an average sensing radii that is about
6% lower than the probability-based algorithm. Similarly, in
obtaining 3-coverage, the grid-based algorithm outperforms
the probability-based algorithm and its average sensing radius
is about 11% lower. The explanation lies mainly in the fact
that grid-based approach uses a local collaboration mechanism
to attain more balanced group formation and hence, improves
the radii assignment in randomly deployed networks. Fig. 7-b
illustrates the average sensing energy consumption of 2 and
3-coverage and shows a behavior similar to that which is
described above. Therefore, with sufficient sensors deployed,
the grid-based approach offers improved optimization of sens-
ing radii based on local topology. Furthermore, as shown in
Fig. 7-c, surveillance quality was evaluated by comparing the
coverage ratio, which shows that both probability and grid-
based mechanisms can achieve almost the same coverage ratio.

VI. CONCLUSION

The Delaunay Triangulation-based algorithm that uses
variable-sensing radii can effectively address and mitigate
problems associated with reliable coverage and energy-
efficiency. Our approach includes the use of a light-weight, dis-
tributed algorithm to approximate Delaunay Triangulation as
a basis for estimating the optimum radii to obtain 1-coverage
and energy-efficiency. Based on the 1-coverage technique, we
developed two methods, a probability-based approach and
a grid-based approach, to easily configure 1-coverage into
any level of multiple coverage. Our k-coverage technique
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Fig. 7. k-Coverage: (a) Average Sensing Radius (b) Average Sensing Power (c) Coverage Ratio

is based on a partition of mutually exclusive groups with
same distribution. The goal is to develop a technique that
is generic to any 1-coverage algorithm and still preserves
the original energy-efficiency obtained from the 1-coverage
algorithm. We have shown comparisons of our grouping-
based technique using 1-coverage techniques proposed by us
and other researchers. Our performance analysis has shown
that different 1-coverage techniques can be extended to k-
coverage with good-coverage and energy-efficiency using our
k-coverage technique. Furthermore, our ns-2-based experimen-
tation demonstrates that the DT-based 1-coverage technique is
more effective in maintaining coverage with energy-efficiency
at various network densities, and the grid-based approach to
the k-coverage problem performs better than probability based
approach because it involves limited coordination among one-
hop neighbors which allows it to attain more desirable features
with arbitrary sensor-deployment.

REFERENCES

[1] http://www.xbow.com/support/support pdf files/mpr-mib series users
manual.pdf, xbow inc., MPR/MIB users’s manual 2005.

[2] A.Khan, C.Qian, P.Sharma, and S.K.Tripathi. An energy-efficient mobile
triangulation-based coverage scheme. In ICC 2007.

[3] M. Cardei, J. Wu, M. Liu, and M. Pervaiz. Maximum network lifetime
in wireless sensor networks with adjustable sensing ranges. In IEEE
WiMob, 2005.

[4] C.L.Lawson. Software for c1 surface interpolation. In Mathematical
Software, 1977.

[5] J. Mecke D. Stoyan, W. Kendall and D. Kendall. Stochastic geometry
and its applications. In Wiley New York, 1995.

[6] A. Dhawan, C. T. Vu, A. Zelikovsky, Y. Li, and S. K. Prasad. Maximum
Lifetime of Sensor Networks with Adjustable Sensing Range. In IEEE
SNPD’06, 2006.

[7] A. Gallais, F. Ingelrest, J. Carle, and D. Simplot-Ryl. Preserving Area
Coverage in Sensor Networks with a Realistic Physical Layer. In
INFOCOM, 2007.

[8] M. Hefeeda and M. Bagheri. Randomized k-coverage algorithms for
dense sensor networks. In INFOCOM, 2007.

[9] C-F. Hsin and M. Liu. Network coverage using low duty-cycled sensors:
random and coordinated sleep algorithms. In IPSN ’04, 2004.

[10] C. Huang and Y. Tseng. The coverage Problem in a Wireless Sensor
Network. In WSNA, Sep 2003.

[11] H.Zhang and J.C.Hou. Maintaining sensing coverage and connectivity in
large sensor networks. In NSF Workshop on Theoretical and Algorithmic
Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks, 2004.

[12] X.-Y. Li, G. Calinescu, P.-J. Wan, and Y. Wang. Localized Delaunay
Triangulation with Application in Ad Hoc Wireless Networks. IEEE
TPDS , 14:1035–1047, Oct 2003.

[13] J. Liebeherr, M. Nahas, and W. Si. Application-layer multicasting with
Delaunay triangulation overlays. IEEE JSAC , 20:1472–1488, Oct 2004.

[14] M.Batalin, G.Sukhatme, and M.Hattig. Mobile robot navigation using
a sensor network. In IEEE Intl. Conf. on Robotics&Automation 2006.

[15] M. Medidi, R. A. Slaaen, Y. Zhou, C. Mallery, and S. Medidi. Scalable
localization in wireless sensor networks. In HiPC 2006.

[16] S. Shakkottai, R. Srikant, and N.B. Shroff. Unreliable sensor grids:
coverage, connectivity and diameter. In INFOCOM, Mar 2003.

[17] S. Slijepcevic and M. Potkonjak. Power efficient organization of wireless
sensor networks. In ICC 2001, May 2001.

[18] S.Meguerdichian, F.Koushanfar, M.Potkonjak, and M.B.Srivastava. Cov-
erage problems in wireless ad-hoc sensor networks. In INFOCOM, 2001.

[19] D. Tian and N. Georganas. A coverage-Preserving Node Scheduling
Scheme for Large Wireless Sensor Networks. In WSNA, Sep 2002.

[20] J. Wang and S. Medidi. Energy efficient coverage with variable sensing
radii in wireless sensor networks. In IEEE WiMob, 2007.

[21] L. Wang and Y. Xiao. A Survey of Energy-Efficient Scheduling
Mechanisms in Sensor Networks. MONET, 11:723–740, Otc 2006.

[22] X. Wang, G. Xing, Y. Zhang, R. Pless C. Lu, and C. Gill. Integrated
Coverage and Connectivity Configuration in Wireless Sensor Networks.
In Sensys, Nov 2003.

[23] J. Wu and S. Yang. Coverage issue in sensor networks with adjustable
ranges. In IEEE ICPPW’04, 2004.

[24] F. Ye, G. Zhong, S. Lu, and L. Zhang. PEAS, A robust Energy
conserving Protocol for Long-lived Sensor Networks. In ICNP, , 2002.

[25] H. Gupta Z. Zhou, S. Das. Connected k-coverage problem in sensor
networks. In ICCCN, 2004.

[26] Z. Zhou, S. Das, and H. Gupta. Variable Radii Connected Sensor Cover
in Sensor Networks. In SECON, Oct 2004.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2009 proceedings.
978-1-4244-4148-8/09/$25.00 ©2009


	Energy-Efficient k-Coverage for Wireless Sensor Networks with Variable Sensing Radii
	Energy-Efficient k-Coverage for Wireless Sensor Networks with Variable Sensing Radii

