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(57) ABSTRACT 

Permeability of a fluid through a saturated material is deter­
mined by measuring the dynamic response of that saturated 
material to shaking vibrations and/or shear wave propagation, 
and then mapping the dynamic response (preferably, vis­
coelastic stiffness and damping properties) to an invented 
model (called "KVMB") that yields the property of perme­
ability. The preferred embodiments may use shear waves, 
inertial effects, and/or transmission effects, but preferably not 
compression, to force fluids through the pores. The mapping 
preferably predicts two possible mappings to permeability, 
coupled and uncoupled. The preferred methods are both inter­
nally consistent and directly related to known laws of physics 
rather than dependent on empirical calibrations. In use, for 
example, one may use a porosity log (conventional neutron or 
sonic) and recordings of SH -waves to obtain damping ratio, 
followed by locating of the damping ratio on a KVMB map 
that depends on porosity, and choosing of one of the two 
possible permeabilities indicated by the mapping, wherein 
the best choice is typically the largely coupled case. 
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Finite Difference Data 
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Solution: C1-25567 ±21S.t5 

C2= 1 ±1¥ 
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Solution: C1 =-51343 ±375 ~ 
C2= 14 ±1If 
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Solution: C 1 =94917 ±2913 ~ 
C2= 255 ±9 It 
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Solution: Cl==182751 ±4860~ 
C2= 69 ± 171# 

600 .-----r---....--_P"'I"Ir"""-_......--__ -~ 

500 
......... 
~ 400 
E 

~ 300 
·u 
o 
~ 200 

100 

<a> 

I ........... - ... 

- - .. - .t ........ wi .. __ • _ , ••••• ~ • _ • __ 1_ .. __ ~ 

I • I I • 

I • • • • .. .. .. -- - .. .. . . - .. .. .. - . . .. .. .. .. -. . . .. . -.. - .. -.. 
• , • I I 

• I • • 
.. til .... 1- ...... -. ....... , ..... - .. t- ...... -t" ........ 

20 40 60 80 100 120 
Frequency (Hz) 

1.2 r----r--_--........----r"'--.,...-.---, 

1.0 
......... 

~ 0.8 
.­....... 

O.S 

~ 
u 0.4 
u o 

0.2 

(b) 

• t • • I 
....... ,- ..... - ~ .. - ..... , ...... - - r ...... -t- .... -.. 

...... -t· ..................... _ ............... "" ................ I 

• • I I I 

.... - - .1_ ..... J ........... , .. _ .... ~ ........ .,' ....... 
I • • • , 

, I I I I 
........ - 1· ........ ,"''' .............. ,- .. - - .. - t" ...... .. 

f" ........ 

20 40 60 80 100 120 
Frequency (Hz) 

FIG. 17 Idaho SH-Wav8 Data (10-5 m): (a) Measured Velocity 
Dlaporalon from Deeper Interval (10-15 m) In Idaho Data; (b) 
Amplitude Decay from Deeper Interval In Idaho Data 



u.s. Patent Apr. 26, 2011 Sheet 18 of 25 US 7,930,926 B2 

(a) (b) 000 

K m 

c 

Fig. 18. Kelvin-Voigt soil representation for: (a) vibrator; (b) wave 
assemblage 



u.s. Patent Apr. 26, 2011 Sheet 19 of 25 US 7,930,926 B2 

(a) frame water (b) 00 

'rllf d ~f1\v 

permeability! 

Fig. 19. Kelvin-Voigt-Maxwell-Biot soil representation for: (a~ 

vibrator; (b) 'Nave assemblage 



u.s. Patent Apr. 26, 2011 Sheet 20 of 25 US 7,930,926 B2 

Equivalent t<:V Damping 
(a) 106~--------------------------------~ 

105 uncoupled coupled 

~ 10
4 

0> 103 
c 
.~ 102 

~ 10
1 

.... 
100~--~--__ --~--~--__ ~ __ ~ __ ~_'~ __ ~ 

1 
10 

2 3 4 5 6 7 
10 10 '0 10 10 '0 

(b) 10 Equivalent KV Stiffness 

9 

8 

7 

6 

X107 ' 

8 9 
10 10 

MflMw=10 

10 
10 

MfIMw;' 
5+---~--~--~--~--~----r---~--~--~ 

1 2 3 4 5 e 7 8 9 10 
10 10 10 10 10 10 10 10 10 10 

KVMS Dashpot (damping Kg/s) 

Fig. 20. Equivalent KV (a) damping; (b) stiffness for a KVMB 
thought experiment 



u.s. Patent Apr. 26, 2011 Sheet 21 of 25 US 7,930,926 B2 

o~------------------------------------~ 
10 

-1 
10 

~ -2 
o 10 ;: 
CO c::: 
en 'l c: -0,1 

00. 10 
E 
(Q 

o 
10' 

I 
-3 -2 -1 0 1 

10 10 10 10 10 

Damping Ratio KVMB 

~ 
10 

Fig. 21. Equivalent KV damping ratio as function of KVMB damping 
ratio for different mass ratios 



u.s. Patent Apr. 26, 2011 Sheet 22 of 25 US 7,930,926 B2 

F/A 

Fig. 22. Determining lumped spring stiffness from soil element's 
shear modulus, Gf 



u.s. Patent 

-1 
10 

-4 
10 

.0135 

Apr. 26, 2011 Sheet 23 of 25 US 7,930,926 B2 

-5+,------~~--~------~----~~----~--~~ 
10 -7 

10 108 105 104 103 

Hydraulic Conductivity m1s 

-1 
10 

Fig. 23.Equivalent KV damping ratio as function of hydraulic 
conductivity at 50 Hz for different porosities 



u.s. Patent Apr. 26, 2011 Sheet 24 of 25 US 7,930,926 B2 

Frame and Water Time Histories 

11e-3 Point 8 Kd=.OO2 mls 

5e-3 

0 

-Se-3 
COUPLED MOTION 

-ge-3 
0 0.20 0.40 

Point A 
11e-3 

Kd=.0109 rrJs 

.-
U) 

E - 5e-3 
~ 
'g 
a> 0 
> 
<D 
'0 -Se~3 :e 
co 
0.. -ge-3 

0 02Q OAO 

10e-3 
Point C Kd= .06 mls 

f~ 
"...,.----.---wa tar 

11 A 

" I " o ~IT 1I:[11\~ i\ 
J 

I j l\ II 

UNCOUPLED MOTION 
-10e-3~~------~~--~--~--,~~--~~ 

o 0.20 GAO 

Time (s) 

Fig. 24. Frame and water time histories corresponding to points A, B, 
and C of Fig. 6 



u.s. Patent Apr. 26, 2011 Sheet 25 of 25 US 7,930,926 B2 

Fig. 25. Equivalent KV damping ratio as function of natural 
frequency for porosity of 30% for different hydraulic conductivities 
corresponding to points A, B, and C of Fig. 6 
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DETERMINATION OF PERMEABILITY 
FROM DAMPING 

This application claims priority of Provisional Application 
Ser. No. 60/915,346, filed May 1,2007, and entitled "Deter­
mination of Permeability From Damping," which is hereby 
incorporated by reference. 

Early work on this matter was done with funding from u.s. 
Army Grant DAAH04-96-1-0318. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 

2 
ping of viscosity to permeability, and in that the present 
invention preferably predicts two possible mappings to per­
meability, coupled and uncoupled. Unlike prior art seismic 
methods known to the inventor, the methods of the preferred 
embodiments are both internally consistent and directly 
related to known laws of physics rather than dependent on 
empirical calibrations. 

Further objects of some embodiments of the invention may 
comprise: sensing beyond the invaded zone, via shear-wave 

10 damping methods; extension to non-invasive applications; or 
applications for shallow, near-surface engineering problems, 
for example, comprising Love wave inversion for permeabil­
ity. 

The invention relates to methods, apparatus, and/or pro­
gramming code means for determining the permeability of a 
fluid through a saturated material by measuring the dynamic 
response of that saturated material to shaking vibrations or 
shear wave propagation, and mapping data from said 
dynamic response to an invented alternative constitutive 
model that yields the property of permeability. Permeability 20 

may be described generally as the ease with which fluids can 
move through rock, soil, or other earth materials, and, there­
fore, the invented procedures, apparatus, and/or program­
ming code means may be applied in oil well production, soil 
improvement, contaminated soils treatment, water well pro­
duction, and/or landfill waste disposal, for example. 

These, and/or other, features and objects may be realized 
15 by embodiments of the invention, as will be understood by 

one of skill in the art after viewing the following description 
and attached Figures. 

SUMMARY OF THE INVENTION 

The present invention relates to a procedure, apparatus, 
and/or progranlilling for determining the permeability of a 
fluid through a saturated material by measuring the dynamic 
response of that saturated material to shaking vibrations and/ 

25 or shear wave propagation. Using embodiments of the inven­
tion, viscoelastic stiffness and damping properties, which 
may be determined from existing methods and hardware for 
creating said vibrations or shear waves, are mapped to an 
invented alternative constitutive model (named "KVMB" by 

2. Related Art 
Current non-seismic methods of permeability determina­

tion are limited to either laboratory tests (constant head or 
falling head), or to well tests like draw-down flow testing or 
drill stem testing in oil wells. The laboratory tests are 
restricted to small sample volumes and are not able to evalu­
ate large samples with large grain sizes (ie: cobbles). Draw­
down and other well flow tests are subject to skin affects and 
alterations of permeability within the invaded zone; for 
example, drilling muds can clog the formation in a zone near 
the borehole and lead to underestimation of permeability. 

A number of existing seismic methods have been proposed 
in the prior art, however, their mathematical representations 
and procedures are different from those used in embodiments 
of the present invention. Such prior proposed methods can be 
quite complex, especially in the area of viscous representa­
tions, for example, the complex shear modulus. If a non­
viscous "effective viscosity" is employed, it results in a com­
plex modulus with a constant imaginary part. "Effective 
viscosity" is a concept that has its origins in past work with air 
saturated samples or seismic data of inadequate bandwidth; 
there are no materials know to possess "effective viscosity". 
The preferred embodiments, on the other hand, comprise 
"truly viscous" representations (frequency dependent imagi­
nary part for the shear modulus opposed to a constant) rather 
than "effective viscosity." 

30 the inventor) that yields/determines the property of perme­
ability. Said mapping comprises projection of the problem to 
a decoupled basis. 

Embodiments of the present invention may comprise appa­
ratus and methods, currently commercially available, for 

35 physically testing the dynamic response of saturated material 
to shaking vibrations or shear wave propagation, and may 
comprise the computer/electronics apparatus and computer 
code to map said dynamic response(s) to the KVMB model, 
so that the petrophysical property of permeability may be 
determined. Apparatus and methods for performing said 

40 physical testing may include cross-well, down-hole, resonant 
column, down-hole vibrators, surfaces sources, geophone 
arrays, and/or Visual Sample Plan (VSP), for example. 

In use, for example, one may use a porosity log (conven­
tional neutron or sonic) and recordings ofSH -waves to obtain 

45 damping ratio, followed by locating of the damping ratio on 
an embodiment of the invented KVMB map that depends on 
porosity, and choosing of one of the two possible permeabili­
ties indicated by the mapping, wherein the best choice is 
typically the largely coupled case. 

50 
One example of prior methods in the patent literature is 

Yamamoto, et a!., (U.S. Pat. No. 5,142,500, 1992), which 
describes "Non-destructive method of measuring physical 
characteristics of sediments." Yamamoto is a cross-well-spe­
cific patent, uses hydrophones and compressional waves, 55 

does not distinguish between coupled and uncoupled motion, 
and is for P-waves (not S-waves). The preferred embodiments 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic portrayal of prior art KV (Kelvin­
Voigt) representations, next to an embodiment of the invented 
KVMB representations. 

FIG. 2 is a map, according to one but not the only embodi­
ment of the invention, of damping ratio plotted vs. KVMB 
dashpot, illustrating solving for KVMB dashpots given KV 
damping ratio. Note the two possible solutions, kvmb-uc 
(uncoupled) and kvmb-c (coupled) of which the coupled 
solution is typically the best choice. 

of the present invention, on the other hand, may use shear 
waves and inertial effects, but not compression, to force fluids 
through the pores. 

Another example of prior methods in the patent literature is 60 

Goloshubin, et a!. (U.S. Pat. No. 7,136,757, 2006), which 
describes "Frequency-dependent processing ... fluid satu­
rated reservoirs." Goloshubin is based on reflected P-waves, 
whereas the preferred embodiments of the present invention 
use shear-waves and transmission effects. 65 

Further differences between preferred embodiments of the 
invention and the prior art may be found in the area of map-

FIG. 3 is a "KV to KVMB map," according to one but not 
the only embodiment of the invention, comprising, wherein 
damping ratio is plotted vs. coefficient of permeability. Note, 
again, the two solutions. 

FIG. 4 is a schematic portrayal of example radiation pat­
terns of equipment that may be used in physical testing to 
obtain data in some embodiments of the invention. 
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FIG. 5 is one example of a typical down hole experiment 
shown in cross section, such as used in Example A. 

FIGS. 6A and B are portrayals of the inventor's SH wave 
source designs, as discussed in Example A: FIG. 6A being 
horizontal hammer blow source with hold down weight, and 5 

FIG. 6B being an inclined hammer source (135 degrees from 
vertical) nailed to soil. 

4 
FIG. 25 is a plot of Equivalent KV damping ratio as a 

function of natural frequency for a porosity of 30% for dif­
ferent hydraulic conductivities corresponding to points A, B, 
and C of FIG. 23. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

FIG. 7 is a discrete realization of KelvinIVoigt soil model 
consisting of a chain of spring, dashpot and mass elements, as 
discussed in Example A. 

FIGS. SA-C illustrate finite difference synthetic data used 
to test the software, as discussed in Example A, wherein FIG. 
SA portrays the true amplitude display after spherical diver­
gence effects have been added, FIG. SB portrays resealed data 

Referring to the figures, there are shown several, but not the 
10 only, embodiments of the invented system, which may 

include methods, apparatus, and/or programming code 
means for determination of penneability from damping. 

to permit viewing of the wavefonn, FIG. SC portrays velocity 15 

oBO Hz filtered version, and FIG. SD portrays 90 Hz filtered 
version. It may be noted that the velocity of the 30 Hz (FIG. 
SC) filtered version is different from the 90 Hz (FIG. SD) and 
is observed from the different slopes in time. 

FIG. 9 portrays synthetic data velocity analysis by sem­
blance, as discussed in Example A. Note that the best velocity 20 

will align the data along constant time and correspond to a 
maximum semblance value. 

Referring to FIG. 1, there is schematically shown a KV 
representation (on the left) and an embodiment of the 
invented KVMB representation (on the right), which splits 
the mass component into both fluid and solid parts (using 
porosity). A key component of the preferred embodiments of 
the invention is the diagonalization of the representations, and 
then selecting the two complex conjugate eigenvalues of the 
KVMB system to compute an equivalent KV damping ratio. 
The eigenvalues depend on the KVMB dashpot, which the 
preferred embodiments relate to penneability. Thus, using 
embodiments of the invention, any existing method that 
employs the KV representation may now be related to the 
KVMB representation, and, hence, to permeability of the 

FIG. 10 shows measurement of the synthetic data ampli­
tude decay, as discussed in Example A. The decibel (logarith­
mic) scale linearizes the exponential decay. 25 fluid through the solid. 

FIGS.11A and B show measured velocity dispersion (FIG. 
11A) and amplitude decay (FIG. 11B) of the synthetic data, 
from Example A. 

Required Givens 
Preferred embodiments of the procedure begin with the 

following properties that must be given. 
FIG. 12 shows field data from the Logan, Utah site, from 

Example A. 
FIGS. 13A and B show SH-Wave Data (2-7 m), specifi­

cally: measured velocity dispersion from silt interval in Utah 
data (FIG. 13A) and amplitude decay from silt interval in the 
Utah data (FIG. 13B) from Example A. 

Porosity n: The material's porosity must be known (unit-
30 less). This may be obtained either by conventional logging 

methods for borehole surveys, or by standard laboratory 
methods, for example. 

FIGS. 14A and B show SH-Wave Data (8-13 m), specifi- 35 

cally: measured velocity dispersion from sand interval in 
Utah data (FIG. 14A) and amplitude decay from sand interval 
in Utah data (FIG. 14B) from Example A. 

FIG. 15 shows field data from the Boise, Id. site, from 
Example A. 

FIGS. 16A and B show SH-Wave Data (5-10 m), specifi- 40 

cally: measured velocity dispersion from upper interval (5-10 
m) in Idaho data (FIG. 16A), and amplitude decay from upper 
interval in Idaho date (FIG. 16B), from Example A. 

FIGS. 17A and B show Idaho SH-Wave Data (10-15 m), 
specifically, measured velocity dispersion (FIG. 16A) from 45 

deeper interval (10-15 m) in Idaho data, and amplitude decay 
(FIG. 16B) from the deeper interval (10 to 15 m) in Idaho 
date, from Example A. 

FIGS. ISA and B portray Kelvin-Voigt (KV) soil represen­
tationfor(FIG.lSA)vibratorandfor(FIG.lSB)waveassem- 50 

bIage, as discussed in Example B. 
FIGS. 19A and B portray Kelvin-Voigt-Maxwell-Biot soil 

representation for (FIG. 19A) vibrator and (FIG. 19B) wave 

KV Damping Ratio Okv If the source of this damping ratio 
value is a vibration test, damping ratio will be specific to the 
frequency and sample dimensions of the test. In tenns of 
lumped properties (spring stiffness k, dashpot c, total mass 
m): 

C 
Okv=--

2{k:;;; 
(1) 

If the source of this damping ratio value is a shear-wave 
survey, then viscoelastic damping ratio will be frequency­
dependent, and must be computed for an angular frequency 
determined by a chosen analysis length L. The angular fre­
quency is given by: 

{C; (2) 
W=--

L 

Damping ratio will then be given as: 

(3) 

assemblage, as discussed in Example B. where stiffness Cl, and damping C2, are the constant coeffi-
FIGS. 20A and B portray Equivalent KV (FIG. 20A) 55 cients of the I-D viscoelastic wave equation: 

damping and (FIG. 2-B) stiffness for a KVMB thought 
experiment, as discussed in Example B. (4) 

FIG. 21 shows Equivalent KV damping ratio as a function 
of KVMB damping ratio for different mass ratios, as dis­
cussed in Example B. 

FIG. 22 illustrates a method for determining a lumped 60 

spring stiffness from a soil element's shear modulus, GJl as in 
ExampleB. 

where u is particle displacement, x is the spatial coordinate of 
wave propagation, and/is time. A field method for obtaining 
Cl (units m2/s2) and C2 (units m2/s) is given in Example A 
below. 

FIG. 23 is a plot of Equivalent KV damping ratio as a 
function of hydraulic conductivity at 50 Hz for different 
porosities, as discussed in Example B. 

FIG. 24 A-C portray frame and water time histories corre­
sponding to points A, B, and C of FIG. 23, in Example B. 

Specific Gravity of the Solids Gs : This is unitless and 
determined by standard laboratory methods. The preferred 

65 embodiments of the invention are not very sensitive to this 
value. A value in the range of2.6 to 2.7 should work quite well 
for most geologic materials. 



US 7,930,926 B2 
5 

Mass Density of the Saturating Fluid Pi Typically, the 
saturating fluid will be water, but could be oil or some other 
fluid. Therefore, mass density may be determined from 
known data and/or known methods. 
Preferred Procedures 

1. Compute Lumped Masses: Assuming saturated condi­
tions, compute the lumped component masses for the solid, 
Ms' and the fluid, Mf One can assume any cross-sectional 
area A for these values (typically one would use unity m2

), but 
the length of the sample or the analysis length L is important, 
and must agree with the frequency chosen for the mapping. 
See equations (5) and (6), below: 

(5) 

and 

Mrnp;A-L (6) 

2. Mapping from KV Damping Ratio to KVMB Dashpot: 
Given the above masses, Ms and MJl porosity n, and the solid 
frame lumped spring stiffness k, there exists a curve that maps 
the Kelvin-Voigt damping ratio (OkJ to the KVMB dashpots 
(dkvmb ) as described in Example B, below. This mapping is of 
key importance to preferred embodiments of the invention, 
and, the inventor believes, is not obvious to those of average 
skill in the art. Said mapping comprises diagonalizationofthe 
2x2 KV oscillator and the 3x3 KVMB oscillator systems, 
then relating the two complex conjugate eigenvalues of the 
KVMB system to the eigenvalues of the KV system. The 
curve is concave downward, exhibits a peak that separates the 
largely coupled from the largely uncoupled conditions. The 
KVMB dashpot will span many orders of magnitude, and is 
directly related to the material permeability Kd (units of m/s). 
The greater the permeability, the smaller the dashpot. See 
examples in FIGS. 2 and 3. 

3. Compute the Two KVMB Damping Ratio Solutions: 
There will be a largely coupled and a largely uncoupled 
solution to the mapping problem (see FIG. 2). Solutions are 
located at the intersection between a line of constant damping 
ratio, Okv' and the concave downward curve that maps the Okv 
damping ratio to the dKVMB dashpots. The line of constant KV 
damping ratio is given by the field or laboratory experiment, 
and must fall below the peak of the KV-KVMB curve (oth­
erwise, there is no solution). 

Best Solution by an Iterative Method: A) One computes 
brackets for the coupled and uncoupled searches. The brack­

6 
uncoupled region. Most earth materials do not present this 
large a permeability. Second, the result is largely insensitive 
to frequency for the coupled case. That is, consistent solutions 
are obtained for a wide range of sample lengths or resonant 
frequencies. If a material has large permeability (for example, 
very course gravel), then one must choose a frequency for the 
mapping that is equal to the frequency at which the measure­
ment of Okv was made. 

Referring to Example C, there is shown one embodiment of 
10 software/programming that may be used in embodiments of 

the invention. The programming computes a determination of 
permeability from KV shear-wave-based measurements of 
stiffness, damping, and neutron logged porosity. Specifically, 
this KD-4X.sci program embodiment incorporates the inven-

15 tor's methods such as described elsewhere in this disclosure, 
for inversion of stiffness and damping (KV) to KVMB dash­
pot and permeability. 

Embodiments of the invention may comprise using appa­
ratus and/or methods that are currently known in the literature 
and/or available commercially. Cross-well, down-hole, reso-

20 nant colunm, down-hole vibrators, surfaces sources, geo­
phone arrays, and/or VSP may be used, for example. Visual 
Sample Plan (VSP) methods are available from Pacific N orth­
west National Laboratory, for example, at http://dqo.pnl.gov/ 
vsp/vspdesc.htm; VSP methods have been described as "a 

25 simple, defensible tools for defining an optimal, technically 
defensible sampling scheme for characterization. VSP is 
applicable for any two-dimensional sampling plan including 
surface soil, building surfaces, water bodies, or other similar 
applications." FIG. 4 schematically portrays some, but not the 

30 only, radiation patterns and conditions for equipment that 
may be used in physical testing to obtain data in some 
embodiments of the invention. 

Examples of methods and equipment that might be used to 
provide data for analysis in procedures according to the pre-

35 ferred embodiments are disclosed by Paulsson Geophysical 
Services, Inc.'s "Long Bore-hole Array." For example, cur­
rently-available commercial equipment may be used, such as 
a down-hole vibrator (10-1400 hz, 20,0000 ft max depth) and 
3-component receiver arrays (to deploy 80-400 levels of three 
component geophones, no practical bandwidth limitations, 

40 clamping via fluid inflatable bladders, deployed by produc­
tion tubing or drill pipe). See FIG. 4, for example. For back­
ground on bore-hole equipment, see Pauls son u.S. Pat. Nos. 
4,751,688,4,783,771, and 4,805,725. Equipment or services 
from other companies that test or log oil wells may be used in 

45 combination with the data handling and analysis of this dis­
closure. 

ets are joined at the peak of the curve shown in FIG. 2. The 
maximum dashpot bracket is set by computing a dashpot that 
corresponds to a minimum expected permeability (see equa­
tion 7, below). The minimum dashpot bracket is set by com­
puting a dashpot that corresponds to a maximum expected 
permeability. B) One performs bisection searches in each 50 

bracket seeking a solution by invoking a function that com­
putes a KV damping ratio from a trial KVMB dashpot. Sen­
sible changes to the KVMB dashpot are made until the com­
puted KV damping ratio matches (within some tolerance) the 
given KV damping ratio obtained from a field or laboratory 55 

experiment. 

Example A 

In-Situ Determination of Soil Stiffness and 
Damping-Methods and Apparatus 

Determination of in-situ dynamic soil properties is funda­
mental to the prediction of the seismic behavior of founda­
tions and soil embanknIent structures. Both elastic (stiffness) 
and inelastic (damping) values are required for computational 

4. Compute Permeability Values Corresponding to the 
KVMB Dashpots: For each KVMB dashpot, the correspond­
ing permeability value will be given by: 

(7) 

analysis. To be of value to engineers, the geophysical inver­
sion should employ the same soil model as used in the 
dynamic analysis software. Current engineering practice 
employs a Kelvin Voigt (KV) model (spring in parallel with 

60 dashpot). The relevant wave equation is a third order partial 
differential equation. This Example A demonstrates how to 
collect in-situ field data and solve for stiffness ( scaled shear) 
and damping values by a method consistent with this consti-

The best solution will be the coupled solution for most geo- 65 

logic materials. The reasons for this are as follows. First, it 
would require a very large permeability to fall in the 

tutive model. Measurements of the seismic wave's amplitude 
decay and velocity dispersion are simultaneously inverted for 
the required stiffness and damping values. These in-situ 
determined stiffness and damping values are directly compa-
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rable to those obtained by resonant column measurements in 
the laboratory. Furthermore, the results may be directly input 
into currently available engineering software to provide val­
ues of stiffness and viscous damping. This paper includes 
both synthetic (finite difference) and field data examples 
which illustrate the method. 

In the interest of clarity, steps common to all in-situ deter­
minations of dynamic soil properties are identified, as fol­
lows: 
1. The recording of in-situ wave propagation data. 
2. Taking measurements from the recorded waveform data. 
3. Calculation of dynamic soil properties from the measure­
ments. 
4. Mapping errors in observed measurements to errors in 
calculated soil properties. 

The first step is accomplished by field experiments such as 
down hole, cross hole, or surface seismic recording. In the 
second step, measurements are taken from the recorded field 
data. For example, in elastic analysis, the measured quantities 
might be travel times and distances. Note that these measure­
ments are not the dynamic properties of interest. Dynamic 
properties are calculated, not measured. Calculation of 
dynamic soil properties is done in the third step. The calcu­
lation is done under a constitutive model and corresponding 
governing differential equation. In fact, the concept of each 
dynamic property is intimately bound with the assumed con­
stitutive model. There is no concept of a soil damping value 
under an elastic constitutive model. Thus, when SH wave 
velocity is accounted for under an elastic model, there is only 
one soil property, the stiffness of the soil. If damping is 
actually present, some portion of the velocity will incorrectly 
be attributed to stiffness. Thus, the computation of a shear 
modulus from wave velocity will be in error if significant 
viscous damping is present. 

It is interesting to note that the same set of recorded wave­
form data (collected by whatever means) may be subjected to 
different measurement and calculation procedures, depend­
ing on the model assumed. Changing either the constitutive 
model or the measurements taken from the data will lead to 
different determinations of soil properties for the same field 
experiment. The different types offield experiments only fix 
the relevant boundary conditions and wavefield sampling. 

The specific calculations in steps 3 and 4, above, are done 
under a mathematical formalism known as inverse theory. 
Inverse theory is well documented. A good text on the subject 
is Menke (1989). Further examples of inverse theory may be 
found in Lines and Levin (1988). 
Review ofIn-Situ Methods 

Various researchers have conducted in-situ determination 

8 
(1983) documents the use of refracted acoustic waves in a 
marine environment to solve for a complex modulus. 

In sandy or fine grained soils, the Seismic Cone Penetration 
Test (SCPT) can be used without actually drilling a borehole 
(Robertson et aI., 1985). In this test, a standard cone pen­
etrometer is modified to include a horizontally oriented geo­
phone. The modified penetrometer is driven into the soil in the 
usual fashion for CPT data. Periodically, the penetrometer is 
halted at different depths and a surface source is excited. 

10 Thus, shear waves are recorded along a vertical propagation 
path. Usually, this path is perpendicular to any horizontally 
layered boundaries. While the majority of SCPT calculated 
soil properties have been done under elastic assumptions, 
there should be no impediment to using SCPT data with the 

15 inversion method presented in this Example A. 
One practical limitation of the SCPT method is that soils 

with gravel or cobbles can refuse the penetrometer. Thus, a 
down hole method is usually preferred when these coarse 
grained soils are present. An example of the down hole 

20 0~~~)~ ~~:~:~~Ii~u~~~~a~~ir ~a~~~~fo~~tyK~i~~~~ n:~:L 
sarily depend on void ratio according to traditional expecta­
tions for sandy soils. Rather, he found SH wave velocity to be 
highly dependent on gradation. The finding that gravelly soils 
are anomalous should be kept in mind when reading the final 

25 field example contained here. 
The most expensive method used to determine in-situ 

dynamic soil properties is the cross borehole experiment. The 
expense is a result of requiring three or more boreholes to be 
drilled. Typically a source is lowered in one borehole and 

30 receivers record horizontally propagating shear waves in the 
other two boreholes. The reader is referred to standardASTM 
D 4428 for a description of the method and the elastic velocity 
analysis that is typically done. One common application of 
the crosshole method has been to evaluate in-situ dynamic 

35 compaction programs (Diese et aI., 1994). 
The cross hole method was recently used to great advan­

tage by Salgado et al. (1997). They demonstrated that large 
strain measurements can be made with this configuration (if 
one of the receiver boreholes is close enough to the source 
hole). This is an extremely useful result, since it is the first 

40 in-situ method to actually determine the strain amplitude 
dependence of the shear modulus. 

One might hope to apply the inversion method of this paper 
to cross borehole data. However, since soil layering is typi­
cally horizontal, one might expect that any configurational 

45 dispersion (wave guide effect) would be difficult to separate 
from inelastic dispersion due to viscous effects. This is not to 
say that down hole methods are free from any complications. 
It is true that scattering effects across layer boundaries will 
interfere with the down hole measurement of attenuation. of rock and soil dynamic properties, using a variety of experi­

mental protocols over the last tree decades. An example of the 50 

least invasive method is a surface wave experiment conducted 
with both source and receivers on the surface of the earth. 
Rayleigh waves (a combination of both compressional and 
shear waves) have proved particularly useful in this regard 
(Nazarian and Stokoe, 1984). The inverse method, Spectral 55 

Analysis of Surface Waves (SASW), is typically used to 
determine the shear wave velocity in a horizontally layered 
earth under an elastic constitutive model. Measurements 
taken from the surface waves yield velocity dispersion as a 
function of frequency. The dispersion curves are then inverted 
to determine actual soil velocities. Under an elastic model, 60 

this dispersion is entirely due to the soil layering (configura­
tional dispersion). It would be very challenging to adapt the 
methods contained in this paper to surface waves. With a 
Kelvin Voigt model, the challenge would be to separate the 
observed dispersion into two components, configurational 65 

and inelastic. Some attempts at surface measurement of 
attenuation have been tried using a different wave type. Stoll 

However, in the down hole configuration, more sampling 
within a layer is often possible. This permits better statistical 
averaging within a layer than is generally possible with only 
two receiver positions in the cross hole method. From a meth­
odology point of view, the choice between cross hole and 
down hole is often one of dealing with complications in 
measuring dispersion versus attenuation, respectively. With 
regards to total cost, down hole is generally less expensive. 
Down-Hole Experiment 

The present inventor's field data were acquired using a 
moveable down hole three-component clamped geophone 
and a stationary three-component reference phone. The ref­
erence phone is used to compensate for small variations in 
source strength, spectral content, and any possible trigger 
variations. FIG. 5 shows the author's typical arrangement of 
a down hole experiment. The borehole and reference phone 
are usually about one meter from the source. This provides a 
nearly vertical propagation path for the waves in all but the 
shallowest levels. The reference phone is buried about 10 cm 
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to protect it from noise sources at the surface. Multiple source 
efforts are acquired and summed at each borehole station. 
Typically five efforts will significantly overcome random 
background noise. Borehole geophone stations are acquired 
at regular intervals, 0.5 or 0.25 meter, depending on the detail 
desired. 

FIGS. 6A and B show two SH wave sources built by the 
present inventor. FIG. 6A shows a horizontal hammer blow 
source with hold-down weight, and FIG. 6B shows an 
inclined hammer source (135 degrees from vertical) nailed to 10 

soil. 
In FIG. 6A, the source is constructed from a 1 meter length 

10 
rable frequencies, strain magnitudes, and stress conditions to 
those in a down hole experiment. Further, the determinations 
of soil properties is often done under the same Kelvin Voigt 
model. Thus, it is easy to compare laboratory results with the 
in-situ measurements described in this paper. This is true 
regardless of the type of boundary conditions invoked for the 
passive end of the oscillator (fixed or free). The reader of this 
document is referred to Drnevich et al. (1978) and standard 
ASTM D. 4015-92. 

The maj or motivation for this work was to refine the acqui­
sition and processing velocity). Measurement of amplitude 
decay or bandwidth in a resonant column oscillator under this 
model yields stiffness and damping values which may be 

of railroad tie. Sledge hammers are pivoted by angle iron 
supports, and are activated by ropes. Only one hammer is used 

15 directly related to those which will be determined in this at a time, with the other hammer being tied off from the beam. 
The wood beam is struck directly by the broadside edge of the 
hammer. The soft hammer blows are highly repeatable and 
produce a useful bandwidth from about 15 to 150 Hz. Sand 
bags may be placed on the railroad tie to provide a static load 
which couples the beam to the soil. Coupling is further 20 

enhanced by angle iron cleats mounted on the base of the 
beam. The angle iron pivots and rope activation system pro­
tect the operator from back injury that might result from free 
swings of the hammers. Each geophone level is acquired with 
two source polarizations so that SH waves may be confirmed 25 

and enhanced by a subtraction process. 

paper. 
When considering the multiple degree freedom chain of 

spring mass dashpot elements (assuming for the moment all 
elements are identical), the finite difference equation of 
motion is found by summing the stiffness and damping 
forces. Thus, for the jth element in the chain, 

(AI) 

where uj and Vj are the particle displacement and particle 
velocity for the jth mass, measured in meters. The spring 
constant is k and the dashpot damping is d. The element 
spacing is ll.x. This equation is often cast in matrix form, as 
was done in generating synthetic data to test the inverse 
method presented in this Example A. 

In the limit of a continuum, difference equation (AI) 

The other design, as shown in FIG. 6B, is lighter weight 
and requires no static hold down load other than the weight of 
the mechanism itself (about 45 pounds). It is nailed to the soil 
and employs the same soil key lock on the base of the timber. 30 

Further, the blows are delivered at 45 degrees from the hori­
zontal, producing a dynamic hold down force. The single 
hammer pivot point can be rotated to either side, eliminating 
the need for two hammers. Horizontal data acquired with both 
sources are quite similar, but the source in FIG. 6B has the 
added advantage of an extra amount of vertical motion which 
can be used in P wave studies. 

35 becomes, 

(A2) 

where u is particle displacement, x is the spatial coordinate, 
and t is time. The constant, C1 , is the stiffness coefficient 
(spring), and C2 is the viscous damping coefficient (dashpot). 
The ratio ofC2 (m2/s) to C1 (m2/s2) is the relaxation time in 
seconds. 

Biot (1941), in referring to Terzaghi's earlier work, 
recalled useful analogy for the Kelvin Voigt solid. In effect, 
the situation is similar to squeezing a permeable sponge 
underwater. The relaxation time is a measure of how long the 

The data of interest are acquired on the horizontal compo­
nent phones. A Bison 9048 series engineering seismograph 
was used to collect the data. Because the tool may rotate and 40 

change orientation as it moves up the hole, the two horizontal 
borehole signals must be rotated to a standard phone orienta­
tion following hodogram analysis of the particle motion. A 
hodogram is a 2 dimensional plot of the ground motion time 
history in the horizontal plane. Based on the measured azi- 45 

muth of the linear particle motion, a coordinate rotation is 
performed to project the entire particle motion onto a single 
horizontal channel. It is the mathematical equivalent of rotat­
ing the tool so that one of the phones is aligned parallel to the 
source polarization. 50 sponge takes to resume its initial equilibrium. This depends 

on the combination of the stiffness of the fibers (spring) and 
the permeability permitting the fluid to return into the previ­
ously squeezed pores (viscous damping). 

Choosing a Constitutive Model 
Over the years, the calculation of the actual dynamic soil 

properties has been done under differing constitutive models 
(Elastic, KelvinIVoigt and Maxwell being the most common). 
Kudo and Shima (1970) provide a concise review of some of 55 

the early efforts. As they point out, the lack of a definitive 
consensus on the appropriate constitutive model has been due 
in large part to the limited bandwidth of the observations. 
Under conditions of limited bandwidth, almost any model 
will produce acceptable results. 

On the other hand, engineering practice has tended toward 
the use of the Kelvin Voigt model for consolidation and soil 
dynamics. Computational examples include SHAKE (Schna­
bel et aI., 1972) and DESRA2 (Lee and Finn, 1982). Further­
more, laboratory measurements by resonant column tech­
niques also invoke the Kelvin Voigt soil model (Hardin, 
1965). The laboratory measurements may be done at compa-

60 

65 

For a continuum, the coefficients C1 and C2 are given in 
terms of shear modulus (G), mass density (p), and absolute 
viscosity (11) of the soil model. Therefore, the mapping 
between the difference equation coefficients and those of the 
governing differential equation are 

(~h) (G)_ (A3) 
- ---7 - -C1 m p 

(~:d)-7G)=C2 (A4) 
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In the writer's experience a nominal layer thickness of about 
5 m with 0.5 to 0.25 intervals between geophone stations 
seems to satisfy the above requirements for layers in the 5 to 
25 m depth range. 
Limits on Resolution 

Modeling soils with greater detail is possible. For example, 
Biot (1962) and Gajo (1995) characterized the soil as a two­
phase medium, keeping fluid and frame motions distinct. 
Gajo computed the theoretical effects of damping on transient 
waveforms. However, separate recording of frame and fluid 
motion is beyond this writer's capability, and the introduction 
of greater detail results in an increase in the number of 
unknowns, which often leads to non-uniqueness in the solu­
tion to the inverse problem. For these reasons, this writer has 
chosen to reduce the problem to only two unknowns, stiffness 
and damping, which admittedly are functionally dependent 
on other parameters such as fluid viscosity, frame porosity, 
permeability, and the densities of the fluid and grains. 

The ultimate limits on spatial resolution depend on the 
bandwidth and frequencies present in the source radiation. 
This is true for all seismic methods---down-hole, cross-hole, 
or conducted on the surface. In the context of typical soil 

10 velocities, and the writer's hammer sources, the available 
wavelengths will range from 50 m to 1 m. Although increas­
ing the high-frequency content might appear desirable in the 
context of resolution, it must be cautioned that the relaxation 

15 mechanism will change as the pore fluids begin to move with 
the frame. This change begins at about 100 Hz for many soils. 

(AS) The third principle in the preceding section suggests that 
the relevant elementary volume should avoid inclusion of 
different soil types. This is only true if the distinct soil types 

Ideally, both C1 and C2 are constants independent of fre­
quency. Furthermore, both C1 and C2 should be properties of 
the medium. In reality, other factors also are relevant to the 
establishment of effective values for these two "constants." 
For example, in the elastic limit, C1 is the square of the phase 
velocity of the wave. The phase velocity depends on the shear 
modulus, which in turn has been shown empirically to depend 

20 occur in layers which are thick in the context of the dominant 
wavelengths radiated by the source. Even relatively extreme 
variations in soil types may be combined into a single relevant 
elementary volume, if they are thin as measured by the avail­
able seismic wavelengths (i.e., below the resolution of the 

25 source radiation). 
Forward Problem 

on a number of parameters which include the magnitude of 
the strain, the stress field, and the void ratio of the material 
(Hardin and Richart 1963). 

For any given values of C1 and C2 one must be able to 
calculate the frequency dependent attenuation and body wave 
dispersion. The needed formulas may be derived by substi-

30 tuting the trial solution, It is difficult to underestimate the appeal of the Kelvin­
Voigt (viscous damping) model. While it is clear that water 
saturated soils should exhibit a viscous interaction with the 
frame, it is far less obvious that a dry soil should exhibit 
viscous behavior. (Grain to grain contact friction is the more 35 

likely dominant cause of energy dissipation.) Therefore, Har­
din (1965) found it necessary to vary viscosity as a function of 
frequency for dry specimens. In short, he suggested that the 
product of viscosity with frequency divided by shear modulus 
should be held constant. Hardin's suggestion has the effect of 40 

eliminating velocity dispersion, linearizes the variation of 
decay, u, with frequency, and establishes a constant Q (qual-

u(x, t)~exp( -ax)'cos(i3x-Ult) (A6) 

into (A2). The complex part of wavenumber, u, is an attenu­
ation coefficient (measured in lImeters), a function of fre­
quency. The real part of wavenumber is ~, and C!J is frequency. 
The result is 

[2C 1 u13-C2( -u2()l+w132)] sin(i3x-Ult)+[ C 1 (u2 -132)-
2C2uw13+w2] cos(i3x-Ult)~O (A7) 

Because (A7) must be true for all time values, t, and space 
values, x, the coefficients of the sine and cosine terms must 
equal zero. This results in two equations in two unknowns: 

(AS) 

ity factor) medium. The writer has decided not to vary C2 in a 
similar fashion, because doing so would suggest that a differ­
ent constitutive relationship might be more appropriate. One 45 

alternative for dry soils might be a micromechanical approach 
invoking a contact law (Cascante and Santamarina 1996). 
Attempts to apply the writer's procedure within the vadose 
zone have not supported the Kelvin-Voigt model. (Holding C2 

constant in dry soils does not seem appropriate.) For that 
reason, the only field examples presented here are taken from 
below the water table. 

50 Solving equation (AS) for C1 and C2 produces 

Application to a Soil Profile 
The practical matter of dividing the subsurface into layers 55 

involves three considerations: 
1. Each layer thickness must be great enough for dispersion 

and attenuation to be measured with some confidence. 
Multiple sample points within a layer are needed to 
determine error bars. 60 

2. Each layer should not be so thick that a significant 
variation of stress occurs across the layer. This problem 
is greatest in the first few meters below the surface. 

3. The layer boundaries should avoid combining signifi­
cantly different soil types in the same layer, subject to 65 

the resolution limits imposed by the available source 
band width (see next section). 

(A9) 

and 

(AlO) 

Solving (A9) and (AlO) for attenuation (u) and phase veloc­
ity (c=C!J/~) leads to the forward equations needed in the 
design of a least squares inversion algorithm, in which a and 
c are measured from the down-hole seismic waveforms as a 
function of frequency. 

Let's begin by taking the ratio of(A9) to (AlO). Solving the 
resulting quadratic formula for wavenumber, ~, yields 
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a 
f3 = 2C

2
w· D 

(All) (AlS) 

where 

(A12) 5 where Il is the loss angle. It follows from (AI7) that 

Substituting (All) for ~ in (AIO) and solving for the attenu­
ation, a, produces 

(A13) 

Note that if the damping coefficient, C2 , vanishes, there is no 
attenuation. Furthermore, the constant, nonzero value of C2 

predicts the frequency dependent behavior of attenuation, a. 

10 

15 

Replacing wavenumber, ~, with w/c and solving for phase 
velocity, c, one obtains 20 

2W2 C2 
(A14) 

e=--

tan(6) = w( ~: ) = wT, (A19) 

Here, T r is the relaxation time. Loss tangent (or loss angle) 
will also vary with frequency. In the Kelvin-Voigt model, the 
variation is linear with the slope being the relaxation time. 

Finally, resonant colunm workers often employ the con­
cept of damping ratio (Drnevich 1978). Damping ratio, Dr 
(the ratio between any value of damping to critical damping) 
is given by 

(A20) 

Da 

The frequency dependent behavior of phase velocity depends 
on both C I and C2 . If damping, C2 , vanishes, the phase veloc­
ity reduces to the elastic case and becomes a constant (no 
dispersion). Applying L'Hospital's rule (since a also van­
ishes), one obtains a constant phase velocity for the zero 
damping case: 

25 where Wo is the resonant frequency. The resonant frequency is 
given by the root of the ratio of the equivalent spring constant 
to polar moment of inertia in a resonant colunm experiment 
(Drnevich et al. 1978). 
Inversion of Attenuation and Dispersion 

30 The inverse problem is to solve for wave equation coeffi-
cients C I and C2 (soil stiffness and damping), given measure­
ments of body wave dispersion and attenuation. The joint 
inversion of two different data types can be linearized and 
formulated as an iterative matrix inversion scheme using a e~ (A15) 

35 Taylor's series expansion limited to the first order terms 
(Menke 1989). The general form is Eqs. (A13) and (AI4) provide the forward equations 

needed for the inversion algorithm. The section on inversion 
shows how measurements of both a and c, made at selected 
frequencies, are then jointly inverted for the constants C I and 
C2 , stiffness and damping. Before consideration of the 
inverse problem, however, the mathematical relationships 40 

connecting C2 to other common expressions of damping will 
be described. 
Relationship of C2 to Other Forms 

While the Kelvin-Voigt model appears frequently in the 
literature, a number of forms have been chosen to express 45 

viscous damping under this model. These forms include com­
plex modulus, loss tangent, loss angle, and damping ratio. For 
the benefit of those readers who work with these other forms, 
the following summary is given. 

One may define a complex shear modulus of the form 

(AI 6) 

with real part, GR , and complex part, GI . This modulus is 
related to the wave equation coefficients by 

(Al7a, b) 

The complex shear modulus, G*, varies as a function of 
frequency in the Kelvin-Voigt model. This variation is linear 
and entirely due to the complex part, Gb and its relation to C2 

in (AI7). 

50 

55 

60 

An alternative form may be computed from the complex 65 

shear modulus. This expression is the loss tangent. The loss 
tangent is given by 

G'lim=lid (A2l) 

The Jacobian matrix, G, contains the derivatives of the mea­
surements (phase velocity and attenuation) with respect to the 
desired parameters (CI and C2 ). The vector, !J.m, contains 
changes to the soil parameters which reduces the least square 
error between the observed and predicted measurements. The 
vector, !J.d, contains the differences between the observed and 
calculated measurements. 

For this specific problem, the matrix equation (A21) is 
partitioned as follows: 

(A22) 

ae ae 

aCt aC2 lie 

.[ liC) 1 = 
liC2 

aa aa lia 

aCt aC2 

The upper partition of G contains the derivatives of phase 
velocity, c, with respect to the unknown soil parameters. 
Similarly, the lower partition contains the decay derivatives. 
Each row of (A22) corresponds to a different sampled fre­
quency. The seismic signals are filtered with narrow band­
pass filters to observe the frequency dependent behavior of 
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velocity and decay. Each filtered version of the waveforms 
contributes two rows to the matrix, one for velocity and the 
other for decay. 

The procedure is iterative, beginning with an initial guess 
for values ofCl and C2 . Solution of (A22) leads to sensible 
changes in C l and C2 that reduce the difference between the 
observed measurements and calculated predictions from 
equations (A13) and (AI4). 

In this joint inversion, we have two different types of mea­
surement nnits in the vector, !J.d. These are velocity (m/s) and 10 

decay (11m) at each sampled frequency. This requires a 
weighting scheme to properly balance the influence of each 
type of measurement magnitude on the final answer. Since the 
numerical magnitude of the data values is dependent on the 15 

units, one must weight the attenuation measurements (values 
in the range of tenths) to achieve parity with the velocity 
measurements (values in the hundreds). 

The writer uses a combination of both row and column 
weighting when inverting (A22). Rows within a partition are 20 

weighted to compensate for the difference in data units. This 
basic block weighting of the rows may be further modulated 
by the reciprocal of the standard deviation for each measure­
ment of velocity and attenuation. Thus, the best data (least 
uncertainty, small standard deviation) are given greater 25 

weight in achieving the solution. Estimates of standard devia­
tion (error bars) for each data type are available from the 
many different geophone locations within a soil layer which 
redundantly contribute to measurement of velocity and decay. 

Column weighting is done to improve the numerical sta- 30 

bility of the calculation. The reciprocal of the maximum 
derivative in each colunm is used for the column weighting. 

The weighted problem is written as follows: 

16 
The diagonal colunm weighting matrix is given by 

y = [Yll 0 1 
o Y22 

(A26) 

where the diagonal elements are equal to the reciprocals of the 
maximum values fonnd in each colunm of matrix G respec­
tively. 

The least squares solution to (A23) is given by Menke 
(1989): 

!lm~H!ld. (A27a) 

(A27b) 

Here H is the weighted least squares inverse. Typically, the 
algorithm converges in about 5 iterations. 

Once the algorithm has converged on a solution for soil 
parameters Cl and C2 , one must determine corresponding 
error bars. What is needed is a mapping between the error bars 
of the calculated quantities (C l and C2 ) and the error bars of 
the measured quantities (c and a) at each frequency. Inverse 
theory provides a solution to this problem (Menke 1989). 

Error bars for the wave equation coefficients (soil stiffness 
and damping) are the diagonal elements of the matrix, Cm' 
given by 

(A28) 

where Cd is the measurement covariance matrix. For uncor­
related measurement errors, Cd is diagonal, and the non-zero 
elements are the squares of the standard deviations for each 
measurement. The square of each measurement standard 
deviation is the estimate of the variance about the measure-

35 ment value. 
[WG'YI y-l'!lm~W!ld (A23) 

where W is the (nxn) row weighting matrix, andY is the (2x2) 
colunm weighting matrix. The diagonal row weighting 
matrix (for n frequencies) is given by 

Well 0 0 0 0 0 (A24) 

0 Wcii 0 0 0 0 

0 0 Wcnn 0 0 0 
w= 

0 0 0 Wall 0 0 

0 0 0 0 Waii 0 

0 0 0 0 0 Wannj 

where the ith weights for the upper and lower partition are 

B· IT· cremin (A2S) 

C· (lei 

Clai 

Here B is a balance factor which can be used to trim the 
desired weighting of the relative influence of each data type in 
achieving a solution to (A23). Equal weighting corresponds 
to a value of 0.5 for B, the typical choice. The over-lined 
variables are the respective mean values of the measured 
attenuation and velocity. The remaining factors are the stan­
dard deviation estimates associated with each measurement, 
nonnalized by the minimum standard deviation for each type 
of data. 

40 

45 

Measure of Dispersion and Attenuation 
Ideally, the measurement of velocity dispersion should be 

done by a robust method which also provides an estimate of 
the nncertainty of each measurement. Methods based on only 
two receiver positions (such as the cross-spectrum between 
two signals from different depths) are vulnerable to modula­
tions introduced from reflections and other indirect wave 
fields. The multisignal snnnnations conducted in a semblance 
calculation provide an effective frequency-wavenumber filter 
that excludes non-direct waves. Further, the average property 
obtained for an interval will include contributions from each 
sampled position in the interval (rather than relying on only 
two points). The writer's method is as follows. For a given 
subsurface interval of interest, different trial velocities are 

50 used to adjust the data into alignment. A semblance value 
(Sheriff1991) is computed for each trial velocity, and a search 
perfonned to find the optimum velocity and corresponding 
alignment. The semblance value defines an objective function 
which must be maximized. This is a nonlinear optimization 

55 problem. The maximum is found by a golden section subrou­
tine, which is an adaptation to an algorithm found in the work 
of Press et a!. (1989). 

Filtering of the data is one way to measure the variation of 
velocity with frequency. Selection of filter bandwidth 

60 requires a compromise between spectral and temporal reso­
lution. The more narrow the bandwidth of the filter, the less 
will be the temporal resolution, and vice versa. The writer 
prefers to use an autoregressive, causal band-pass filter with a 
bandwidth no greater than 2 Hz. The filters introduce phase 

65 delays in the data. However, for any given filter, the delay will 
be the same for all the geophone stations. Thus, the phase 
delay will have no effect on the measured velocity. 
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The error bars for velocity at any measured frequency are 
found by time shifting the data into alignment with the deter­
mined velocity. Then, using one signal as a reference, the 
relative misalignments between the traces are computed by 
taking the normalized inner product between traces. The 5 

more perfect the alignment, the smaller the error bar will be. 
The same filters are also used to measure the variation in 

amplitude decay with frequency. The filtered data are scanned 
for RMS amplitude of the direct wave as a function of source­
receiver distance. The amplitudes are then corrected for 10 

spherical divergence spreading loss and a linear fit made on 
the logarithm of the corrected amplitudes as a function of 
propagation path length. The slope of the linear fit yields the 
decay coefficient, u. The least square error of the fit is used in 
the determination of the decay coefficient error bars. The 15 

more perfect the fit, the smaller the error bar. 
Demonstration on Synthetic Data 

A synthetic data set simulating a down-hole experiment 
was generated by Runge-Kutta integration of the finite differ­
ence equation. Eq. (AI), cast in matrix form, was used to 20 

calculate the waveforms. The spatial sampling was 0.2 m and 
the temporal integration interval was 0.0001 s. The simulated 
source had a peak frequency of 50 Hz and a nominal -6 dB 
bandwidth of 40 Hz. The synthetic data were resampled to 
0.0002 s sample interval after generating the waveforms 25 

(comparable to the field recordings to be presented later). The 
I-D chain of Kelvin-Voigt elements simulated a 40 m 
medium. Data corresponding to offsets in the range from 6 to 
11 m were then selected for analysis (the selection avoided 
reflections from the end of the modeled medium). The stiff- 30 

ness and damping were set at C1 =160,000 m2/s2 and C2=200 
m2/s. 

18 
ment with noise free data should result in a value approaching 
unity. The golden section search procedure determined an 
optimum estimate of velocity equal to 418 mls (sem­
blance=0.9413). FIG. 9(b) shows the application of this 
velocity to align the data. This procedure is performed for 
each filtered version of the data to measure a dispersion curve. 

Determination of the exponential amplitude decay con­
stant, u, is done by formulating the problem as a least squares 
linear regression for each filtered version. At some distance, r, 
from the source, the Kelvin-Voigt model predicts the wave 
amplitude, 

(A29) 

where Ao is the amplitude of the wave at some reference 
distance from the source, roo Multiplying both sides of (A29) 
by distance, r, and taking the logarithm of both sides leads to 
an expression for amplitude decay in decibels, 

dB = 20 loglO(~) = (-20 loglOe)o:(r - ro) 
Aoro 

dB = (-8.6860:)' (r - ro) 

(A30a) 

(A30b) 

Thus, the slope of a line on a decibel vs. distance (r-ro) plot is 
(-8.686)u. FIG. 10 shows such a plot for the synthetic data. 
The decibel (logarithmic) scale linearizes the exponential 
decay. The value of u(lIm) is easily computed from the slope 
(dB/m) by dividing by -8.686. Because a I-D calculation corresponds to a plane wave, a 

spherical divergence beam spreading decay was manually 
applied to the data. This was done by scaling the signal 
amplitudes by the reciprocal of the distance from the source. 
This lIR amplitude scaling simulates a lIR2 decay in power 
density associated with a spherical wavefront. 

35 FIG. 12 shows the measurements of decay and dispersion 
as circles with error bars (95% confidence interval). The 
calculated dispersion and decay from the solution for C1 and 
C2 is displayed as a solid curve through the measured points. 
The solution is quite close to the values of C1 and C2 used to FIG. S shows several views of the synthetic data. The true 

amplitude (after spherical divergence added) is shown in FI G. 
Sea). The rapid amplitude decay is quite evident. To better 
show the changes in the propagating wavelet, FIG. S(b) pre­
sents the data with each signal resealed by the L2 norm. The 

40 generate the data. The somewhat larger stiffness and damping 
values result from the additional computational dispersion 
which is common in finite difference methods. The effect is 
due to the finite discretization of the computational problem. 

L2 norm is simply the Euclidean norm. It is found from the 
root of the snm of the squares of the samples in any given 45 

signal. The changes in the wavelet due to dispersion are rather 
modest given the short window of observation (5 m). The 
wavelet does change with distance since the different fre­
quencies propagate with different velocities (dispersion). 

Clear evidence of dispersion can be seen in FIGS. S(e) and 50 

(d). These are the 30 and 90 Hz filtered versions of the syn­
thetic data (2 Hz bandwidth, 14 pole filters). The reader can 
better observe the different velocity for each frequency by 
laying a straight edge along a line of consistent phase in FIG. 
S(e) and observing the misaligrIillent with the waves in FIG. 55 

Sed), which are faster. The velocity at each frequency corre­
sponds to the slope in time of the wavefront. 

An automated method for determining the velocity at each 
frequency is to apply time shifts to the data for an assumed 
velocity, and then compute a semblance value to quantifY the 60 

quality of the trial alignment. FIG. 9 illustrates this trial-and­
error procedure of removing travel time with an assumed 
velocity. This is done for the 30 Hz filtered version. The 
correct velocity will align the wavefront along a line of con­
stant arrival time. FIG. 9(a) shows that the correct velocity 65 

lies between 615 and 363 mls. The corresponding semblance 
values are s=0.8169 and s=0.8686 respectively. Perfect align-

Mechanical waves propagating through discrete lattice struc­
tures also exhibit this type of additional dispersion. 
Demonstration on Field Data 

Two different borehole surveys have been selected to dem-
onstrate the writer's method. One borehole was located in 
Logan, Utah, the other in Boise, Id. The Utah data were 
acquired at the GeoLogan97 field day site. The survey was 
conducted on luI. 15, 1997, during the first meeting of the 
ASCE GeoInstitute. This site exhibits low levels of viscous 
damping in a soil profile consisting of fine grained sands, silts, 
and clays. 

The Idaho data were acquired in coarse grained granular 
soils consisting of sands, gravels and cobbles. The Idaho data 
were collected between episodes of sparging which were 
being conducted to treat contaminated ground water. The 
levels of viscous damping are very large at this location. 
Utah Case History 

FIG. 12 shows the SH-wave data from the horizontal com­
ponents. Following hodogram analysis for tool orientation, 
the data were rotated parallel to the source polarization. The 
signals have been scaled to remove the amplitude decay with 
depth, permitting the reader to better observe the waveform of 
the direct arriving wave. Also shown in FIG. 12 is the soil 
behavior type classification from a neighboring cone pen-
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etrometer (CPT-3) survey conducted by ConeTec in Novem­
ber 1996. The CPT survey was done in preparation for the 
GeoLogan97 meeting. 

The change in slope of the first arrivals at the top of the sand 
clearly indicates a change in wave velocity. The writer chose 
to apply the method to intervals both above and below this 
change in velocity. One interval (at 2 to 7 m depth) is in the 
low velocity saturated silts and clays. The other interval (at 8 
to 13 m depth) is in the upper portion of the higher velocity 
sand. Thus each interval is about 5 m thick and includes about 10 

20 geophone stations (0.25 m station spacing). 
The source was the one shown in FIG. 6(b). The entire data 

set was acquired by the writer without any helper. Working 
alone, it took 3 hours and 15 minutes to acquire the data. With 
a helper, this would have been reduced to about 2 hours. The 15 

data were collected on a Bison 9048 engineering seismograph 
with a 0.00025 second sample interval and filters set to 4 and 
1,000 Hz. 

FIG. 13 shows the dispersions decay for the silt interval. In 
this and all later presentations, error bars are for 95% confi- 20 

dence limits (random error). Bias will always be present and 
is difficult to quantifY. Bias is introduced by choices, such as 
the precise limits on the interval, the filter frequencies, and the 
weighting scheme used in the inversion (all of which affect 
the resulting C1 and C2 determinations). 

Clearly, the lack of velocity dispersion and nearly flat 
amplitude decay response with frequency suggest a low level 
of damping. This low level of damping is further supported by 
the need to reduce the recording instrument preamplifier gain 

25 

by 20 dB from the normal setting used in Idaho, where signal 30 

losses have been greater. The smooth curves in FIG. 13 are the 
dispersion and amplitude decay computed from the solution: 

Cl~25,567±218 m2 p stiffness 

20 
at the water table, suggesting that the SH-wave speed 
increases below the vadose zone. 

The data were acquired with the horizontal impact source 
shown in FIG. 6(a). Data collection was on Dec. 20, 1994. 
Downhole stations were acquired every 0.5 m. The recording 
instrument was a Bison 9048 engineering Seismograph with 
a sample interval of 0.0002 s and filters set at 8 and 1,000 Hz. 
With one helper, the survey took 1 hour and 40 minutes for 
data collection. 

Stiffness and damping for two intervals are presented here. 
A shallow interval Gust below the water table, at 5 to 10 m) 
was found to exhibit extreme damping. The other deeper 
interval (at 10 to 15 m) was found to have significantly less 
damping. Since the wave velocity at the dominant frequency 
of about 50 Hz is not much different in the two zones, an 
elastic analysis would fail to detect a significant difference 
between the two intervals. As will be shown, the difference 
becomes evident only when one examines velocity and 
amplitude decay as a function of frequency. 

FIG. 16 shows the measured velocity dispersion and 
attenuation for the upper interval. The smooth curve is calcu­
lated from the inversion solution: 

Cl~94,917±2,913 m2 /s2 stiffness 

The corresponding relaxation time is 2,686±125 microsec­
onds. It is evident that extremely large viscous forces are 
causing the dispersion and amplitude decay. The use of a 
Kelvin model is well justified since the dispersion and decay 
observed agree well with the model (see Eqs. [AI2], [A13], 
and [AI4]). In the language of inverse theory, the error bars in 
the solution are chiefly a result of errors in the measured 
quantities (data error) rather than due to the choice of an 

35 inappropriate model (resolving error). 
One possible contributing factor to the large damping may 

be residual trapped air in the pores. The survey was conducted 
four and a half months following the termination of a seven 
month sparging-ground-water treatment program. At this 

The relaxation time for the silt (from the ratio of CiC1) is 
only 39±29 flS. Such a short relaxation time, uncertain as it 
may be, could be an indication that the pore fluids are moving 
with the frame in this frequency band (presumably due to the 
low level of permeability that one would associate with finer 
grained materials). If the fluids are moving with the frame, 
rather than through it, there would be less viscous drag. 

FIG. 14 shows the dispersion and decay measurements for 
the sand interval (at 8 to 13 m depth). The velocity dispersion 
is slightly greater than in the silt. The variation of amplitude 
decay with frequency is significantly greater than for the silt. 
Again, the smooth curves are computed from the solution: 

40 point, there is no way to know if trapped air was present 
during the survey. Trapped air would reduce the degree of 
water saturation. Significant alteration of SH-wave velocity 
has been documented in partially saturated soils (Wu 1984). 
In any case, the granular nature of the soils would predict 

45 sufficient permeability for interaction between fluids and the 
soil frame, the result being viscous damping. 

Cl~51,343±375 m2 /s2 stiffness 

FIG. 17 shows the measurements of dispersion and decay 
for the deeper interval. It is clear that significantly less viscous 
damping is present from these data. The smooth curves were 

50 calculated from the solution: 

Damping has increased by a factor of 14, and the stiffness has 
doubled. For the sand, the relaxation time is computed to be 
273±19 flS. Clearly, the role of viscous damping has over- 55 

whelmed the increase in stiffness. It may be that the presumed 
increase in permeability which one would likely associate 
with a larger effective grain size is partly responsible for the 
increased damping. That is, the sandy soil may be of sufficient 
permeability to afford more fluid-frame interaction. The 60 

result would be more viscous damping in the sand than in the 
silt. 
Idaho Case History 

FIG. 15 shows the Idaho SH-wave data rotated into align­
ment with the source polarization. Also shown is a description 65 

of the material observed during the drilling process. The 
sudden change in slope of the direct arriving wavefront occurs 

C 1 ~ 182,7 5l±4,860 m 2/s2 stiffness 

C2~69±17 m2/s damping 

The relaxation time for this interval is computed to be 378±94 
fls. In comparing the two intervals, it is clear that the lower 
interval is stiffer with less damping. The fact that damping can 
raise the velocity of the wave is easily overlooked if not 
measured. This may be important when computing other 
quantities such as shear modulus from velocity alone. 

Conclusions 

Example A 

A method for determining in-situ stiffiness and damping 
has been presented. The method is to jointly invert both mea-
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surements of SH-wave velocity dispersion and spatial ampli­
tude decay, corrected for beam divergence. The method is 
consistent with current engineering practice and uses a 
KelviniVoigt constitutive model. The field examples pre­
sented here demonstrate that the method works in practice. 
Furthennore, the current use of the Kelvin-Voigt model in 
engineering (where pore water is present) is supported by 
these in situ detenninations. 

Since damping will increase the wave velocity, it is pos­
sible to introduce significant errors by computing shear 10 

modulus from wave velocity alone. It has been common 
practice to compute the shear modulus from measurements of 
the dominant group velocity of SH-waves. This is like mea­
suring only the resonant frequency in a springlmass/dashpot 
experiment, and then computing the spring constant without 15 

consideration of any damping effects. 
The actual measurement of amplitude decay is essential if 

damping is to be detennined. To measure amplitude decay, 
the writer's method invokes a significant amount of redun­
dancy and averaging to overcome variations in borehole to 20 

formation coupling. This strategy also helps reduce the 
effects of constructive and destructive interference presented 
from scattered and reflected waves. Further, it is this redun­
dancy which also pennits an estimate of the errors involved. 

Finally, the writer would like to speculate that his often 25 

observed increase in shear wave velocity at the water table 
may be an indication of a shift in dominance from contact 
(grain-grain) friction in the vadose zone to viscous (fluid­
frame) friction below the water table. It is likely that both 
relaxation mechanisms exist at all times, but the high viscos- 30 

ity of water (relative to air) may shift the balance to a vis­
coelastic model below the water table. Evidence for this con­
jecture may also be found in resonant column studies of 
saturated and dry soils (Stoll 1985). 

35 

ExampleB 

Relating Damping to Soil Permeability 

22 
Schwartz 1990). The KV representation of a soil element 
places a dashpot, c, in parallel with the spring, k [see FIG. 
18(a)]. This system, composed from a single element, is a 
single degree of freedom oscillator, and this is the basis for the 
analysis of the resonant column test. If this single degree of 
freedom element is joined with other similar elements, the 
result is a multi-degree of freedom system [FIG. 18(b)]. 
When enough elements are cascaded, the assemblage can 
represent the one-dimensional (1D) propagation of a shear, 
horizontally polarized (SH) wave. 

A number of writers have represented the dashpot-spring 
combination in terms of other tractable components. In 
extending Terzaghi' s original one-dimensional theory of con­
solidation to three dimensions, Biot (1941) makes reference 
to Terzaghi's rubber sponge analogy as a way to describe the 
response of a saturated soil to compression. Later, Biot's 
papers on wave propagation introduce the idea of represent­
ing the pores by small cylinders. The cylinder diameter 
became the key parameter needed to quantifY permeability 
(Biot 1956a). Biot used the cylinder diameter to extend his 
theory to include turbulent flow beyond a defined transition 
frequency (Biot 1956b). Biot's later work includes a number 
of figures which represent the spring and dashpot in tenns of 
frame stiffness and fluid-frame viscous damping. Examples 
may be found in Biot (1962b) and Biot (1962a). Similar 
descriptions can also be found in Gassmann (1951) with his 
"open" and "closed" systems being end members of perme­
able and impenneable cases. The choice of uniform, spherical 
grains (Gassman 1951), or cylindrical pores of the same uni­
form diameter (Biot 1956a) fall short of describing actual 
soils. Their value is in that such simplifications lead to a 
tractable analysis. For example, the capillary tube models of 
fluid flow through soils have been used to derive Darcy's law 
(Bear 1972). 

In early resonant column studies, dry samples were evalu-
ated (Hardin 1965). The resulting measurements were in con­
flict with the constant viscosity property of the KV model. In 
order to retain a viscous representation, an effective viscosity 
was proposed which varied inversely with frequency. This 

Published comparisons of complex moduli in dry and satu­
rated soils have shown that viscous behavior is only evident 
when a sufficiently massive viscous fluid (like water) is 
present. That is, the loss tangent is frequency dependent for 
water saturated specimens, but nearly frequency independent 
for dry samples. While the Kelvin-Voigt (KV) representation 
of a soil captures the general viscous behavior using a dash­
pot, it fails to account for the possibly separate motions of the 
fluid and frame (there is only a single mass element). An 
alternative representation which separates the two masses, 
water and frame, is presented here. This Kelvin-Voigt-Max­
well-Biot (KVMB) model draws on elements of the long 
standing linear viscoelastic models in a way that connects the 
viscous damping to permeability and inertial mass coupling. 

40 introduction of an "effective" viscosity has become wide 
spread and integrated into engineering practice (Kramer 
1996). The continued use of the concept is testimony to the 
strong appeal of the KV representation, even in cases where a 
viscous effect is not observed. Stoll (1985) demonstrated that 

A mathematical mapping between the KV and KVMB rep­
resentations is derived and permits continued use of the KV 
model, while retaining an understanding of the separate mass 
motions. 

45 the introduction of water into the pore spaces could lead to a 
classic viscous response, suggesting that a dense viscous 
fluid, such as water, is required. Stoll presented results on an 
Ottawa sand which demonstrated an increase in damping with 
frequency, but only for water saturated samples. In the case of 

50 dry samples, damping remained constant with frequency. 
Inspired by Stoll's reports for saturated soil and the theo­

retical foundation ofBiot (1962a), the author fonnulated the 
KVMB model. This model behaves very much like the KV 
model, but splits the mass into two parts, and is a rearrange-

55 ment of the elements in series (similar to a Maxwell body). 
When relating this KVMB model to a saturated soil, porosity 
can be used to define the mass ratio (frame to pore fluid). The 
dashpot is an expression of the permeability which controls 
the relative motion between frame and pore fluid. Further, it is 

60 possible to mathematically map the KVMB model elements 
to those of the classic KV representation, and thus relate 
determinations of porosity and KV viscous damping to per­
meability. 

The classic Kelvin-Voigt (KV) solid may be the most 
enduring and ubiquitous model used to represent the engi­
neering behavior of soils. Examples of its application include 
compressibility and settlement (Das 1993), as well as the 
response of soils under impact (Roes set et al. 1994). The 
model also governs the analysis of standard soil tests, includ­
ing consolidation ASTM-D2435, (ASTM 1996a) and reso­
nant-columntestsASTM-D4015 (ASTM 1996b). The model 65 

also finds application in describing ground water flow 
through unconsolidated granular soils (Domenico and 

KVMB Representation 
A major limitation of the KV model is that the mass is 

treated as a single element. A two phase medium, like a 
saturated soil, can not be fully represented with the masses 
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bundled in this way. The KVMB representation presented 
here separates the mass into pore fluid and solid frame com­
ponents (according to porosity). Viscous damping is then due 
to the frictional losses resulting from the relative motion 
between fluid and frame. Frictional losses from this motion 5 

produces the "dashpot". The KVMB dashpot depends on 
permeability. 

The KVMB elemental representation is shown in FIG. 
19( a). As in the case of the classic KV model, there is a single 
dashpot and a single spring, but arranged in series (reminis- 10 

cent of the Maxwell model). Also, we can view the system 
from either point of view, an oscillator (single element) or 
wave (assemblage of elements). The significant difference is 
the explicit separation of the water mass from the frame mass 15 

by the dashpot (Biot's influence). The dashpot controls the 
relative motion between the two mass components (fluid and 
frame), and this permits us to relate the dashpot to permeabil­
ity. 
Dampened Oscillator Points of View 20 

Engineering practice has a significant investment in the KV 
model. Our very concept of viscous damping and damping 
ratio for an oscillator are uniquely bound to this single degree 
of freedom (SDOF) system. Therefore, it is useful to find a 
mathematical mapping between the KV and KVMB repre- 25 

sentations. Both models produce very similar behavior, but 
the KVMB model can relate that behavior to soil fluid-frame 
interaction in a more direct way. A mapping between the KV 
and the KVMB models can be achieved through a Gedanken 
Versuch (thought experiment). This is done by examining a 30 

single dampened oscillator element for both representations. 
The components are considered matched when the free 
response time histories are as close as possible. We consider 
the free response due to an initial condition consisting of a 35 

velocity impulse applied to either the frame mass (KVMB), 
or the single mass element (KV). The mapping is facilitated 
by decoupling the differential equations and relating two of 
the respective eigenvalues. Thus, it is possible to compute an 
equivalent KV dashpot from the permeability and degree of 40 

inertial mass coupling represented by the KVMB model. 
Decoupling the KV Representation 

24 
oscillation frequency, and the real part the exponential decay 
envelope of the solution. The analytic solution to Eq. (B3) is 
given as (Sadun 2001) 

[
U(t) [=B .r e'lt 
it(t) h l 0 

(B4) 
o r [U(O) [ 

eA2t l' B/;;. it(O) 

where the new, diagonalized basis is given by matrix, Bkv, the 
columns of which are the eigenvectors of A kv . For our par­
ticular choice, the initial conditions are given by u(O)=O and 
u(O)=1. In the underdamped case, the eigenvalues Ai will be 
complex conjugates. 
Decoupling the KVMB Representation 

By similar reasoning, the KVMB model shown in FIG. 
19(a) obeys the coupled governing differential equation 

dI (BS) 
diU = Akvmh·U 

0 0 (B6) 
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k d d 
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Where uf=frame-mass displacement; uf=frame-mass veloc­
ity; and Uw =water-mass velocity. This 2DOF system is 3x3 
with three eigenvalues. The solution giving the free response 
of the KVMB system to initial conditions is 

o (B7) 

o 

Where are three eigenvalues, Yi' and the columns of the new 
basis matrix, B kvmb' are the eigenvectors of A kvmb . Our choice 
of initial conditions is ujO)=(O), ujO)=I, and uw(O)=O. In both 
the KV and KVMB cases, the single mass, or the frame mass 

The governing differential equation for the free response of 
the KV model corresponds to the well understood SDOF 
system 

mii+cu+ku=O (B1) 

where mass motion is given by displacement, u, velocity, U, 
and acceleration, U. This second order ordinary differential 
equation (ODE) can be recast as a coupled system of two first 
order ODEs, (Sadun 2001) 

45 receives an initial velocity impulse, respectively. For an 
underdamped system, Eq. (B7) is an exponentially decaying 
sinusoid superimposed on an exponentially decaying trend. 
This superimposed trend is small in amplitude, and thus the 
two models can be effectively mapped. 

dI 
-U=Akv· U 
d1t 

(B2) 

(B3) 

where u=displacement-velocity vector. In this autonomous 
form, we recognize an eigenvalue problem which can be 
diagonalized in a new basis given by the eigenvectors of 
matrix, A kv . Eqs. (Bl) and (B3) are equivalent, as are their 
solutions. In the specific case of an underdamped system, the 
solution is an exponentially decaying sinusoid. The eigenval­
ues of Akv are complex, the imaginary part giving the damped 

50 Motivation for Mapping KV to KVMB 
The advantage of the KVMB system lies in its separation of 

the two mass components, solid, and water. Once the masses 
are separated, the viscous damping may be related to the 
permeability. Motivation for the mapping resides in the exist-

55 ing laboratory and field methods which are grounded in the 
KV model. We can relate the laboratory or field measured 
spring and dashpot values (KV model) to corresponding val­
ues for the KVMB spring and dashpot. Assuming porosity is 
known, the resultant KVMB dashpot can be related to the soil 

60 permeability, producing a technique to evaluate permeability 
from either resonant column or SH wave determinations of 
damping (Michaels 1998-as in Example A). 

An intuitive description of the mapping is as follows. At 
one end limit, say in a clay, the pore fluids move largely with 

65 the frame, the lack of significant relative motion leading to 
small damping values. We say that the masses are coupled in 
a clay, and the KVMB dashpot would have a large value (but 
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the KV dashpot would be small in value). At the other 
extreme, say a gravel with large pores, the pore fluids and 
frame move independently. We say that the masses are 
uncoupled in a gravel, and the KVMB dashpot has a small 
value (as does the KV dashpot). The frictional losses are small 
due to the large pore diameters. 

Between these two extremes, say for a sand, the permeabil­
ity is small enough to maximize viscous friction and hence 
damping. That is, the pores are large enough to permit sig-

10 nificant relative motion between the pore fluid and frame, but 

26 
dashpot constants. One simply back solves for the component 
values from the eigenvalues. The solution is to set Al[l' 
A2[2' discard Y3' and 

(B9) 

(BlO) 

Where Yl and Y2=retained complex conjugate eigenvalues 
from the KVMB representation; and m=KV mass which 
effectively completes the mapping. Thus, it is not necessary to 

small enough to lead to significant viscous friction and damp­
ing. Intuitively, we expect a peak in equivalent KV damping 
value to occur at the transition between coupled and 
uncoupled cases. 

Experimental support for the view that viscous damping is 
related to fluid-frame interaction in sands is found in Stoll 
(1985). Stoll demonstrated that resonant colunm testing of 
saturated sands produces a frequency dependent damping, 
while dry samples produce a damping which is nearly fre­
quency independent. In short, water can produce a larger 
viscous damping effect than air since the mass of water will be 
more than the mass of air for the same pore volume. Thus, 
when combined with porosity and pore fluid specifications, 
the KVMB representation is able to predict both the large and 
small viscous effects corresponding to saturated and dry con­
ditions, respectively. 

15 actually compute the time series contemplated in the thought 
experiment. We need only determine the KVMB eigenvalues 
to compute the effective spring-mass and dashpot-mass ratios 
of the KV system. Note that we obtain only ratios with respect 
to mass on the left hand side, not individual values for the 

20 spring and dashpot. It is these ratios that determine the eigen­
values of the KV system given in equation Eq. (B3). 

FIG. 20 illustrates the mapping for a specific KVMB oscil­
lator. Here, values offrame mass (1,000 kg) and frame spring 
(1E+8 N/m) were held constant while the KVMB dashpot 

Mapping KV and KVMB Representations 

25 value varied over a range from 10 to 109 kg/so Two cases of 
water mass are shown and indicated by the ratio of frame to 
fluid masses. The case where the water and frame masses are 
equal is shown as a solid curve. 

As previously mentioned, the mapping is done through the 
thought experiment. Each dampened oscillator, KV and 30 

KVMB, is excited by a velocity impulse applied to the com­
bined or frame mass, respectively. We consider the spring and 
dashpot components of the two alternative models mapped 
when the resultant free response of the frame mass (KVMB) 
is as close as possible to the response of the combined mass 35 

(KV). We can view the response of each system as a time 
series describing the position of the mass as a function of 
time. For the KVMB model, this would be the frame mass, for 
the KV model the combined mass. 

A scalar metric which quantifies the similarity between 40 

these two displacement signals is given by the angle between 
the two time series. The angle is 

( 
u'j.u ) 

e = arccos Ilufll'lIull 
(BS) 45 

where uf=displacement time history of the solid frame mass 
of the KVMB model; and u=displacement of the combined 50 

mass in the KV model. The denominator terms are the Euclid­
ean (L2) norms for the two signals. Because both signals are 
essentially exponentially decaying sinusoids, there is no need 
to consider the response beyond the point where the motion 
has died out. The angle 8 provides a scalar metric which can 55 

be used to evaluate the mapping between the two representa­
tions. The smaller the value of 8, the better the match. Thus, 
if the two time histories were identical, the angle would be 
zero. In the author's experience, values of 8 less than 5 cor­
respond to time histories which are virtually indistinguish- 60 

able. 
The solution is to discard the purely real eigenvalue of the 

KVMB system, and retain only the complex-conjugate eigen­
value pair. It is the complex-conjugate pair which produce 
that part of the response associated with the KV model. The 65 

retained KVMB eigenvalues are substituted into the KV solu­
tion which gives the eigenvalues in terms of the spring and 

FIG. 20(a) shows the mapped equivalent dashpot for the 
KV model. At low values of damping, the KV and KVMB 
dashpots are equal (similar to what we would expect for a very 
permeable soil, like a gravel). The equivalent spring stiffness 
is shown in FIG. 20(b). The KVMB and KV stiffness values 
are also equal at low KVMB damping values. As the KVMB 
damping value increases, we reach a peak in the effective KV 
dashpot. This marks the transition point where the water and 
the frame begin to move together. Beyond the peak, the 
motion becomes increasingly coupled, and due to the reduced 
relative motion between frame and water, we have less fric­
tion and less equivalent damping. In terms of a soil, a large 
KVMB damping would represent a clay or other soil oflow 
permeability. The water, being dragged in the pores, reduces 
the frictional losses. Further, with the two masses largely 
moving together, we expect a reduction in the resonant fre­
quency of the moving frame. This predicted reduction in 
natural frequency is expressed as an apparent reduction in the 
KV stiffness (since the frame mass is constant). In this 
example, the natural frequency of the oscillator drops from 
about 50 to 35 Hz. 
Normalization to Damping Ratio 

While the above example is for a specific mass, spring and 
dashpot, we can view the problem from a normalized, general 
point of view. We do this by modifying the damping plot 
shown in FIG. 20( a), replacing damping values with damping 
ratios. There are two damping ratios to be considered (KV and 
KVMB). Although the formulas are identical, the ratios cor-
respond to different arrangements of the elements. The for­
mula for damping ratio is well known, and is given by 

c 
/;=--
2~ 

(Bll) 

where C=dashpot's viscous damping (kilograms/second); 
K=spring's stiffness (Newtons/meter), and M=mass (kilo­
grams). Damping ratio, 1;, is unitless. The dashpot and spring 
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require no comment for either the KV or KVMB models. The 
mass does require some thought, since there are two of them 
in one model, and one mass in the other. Since the left hand 
side of Eqs. (B9) and (BlO) are ratios, we can eliminate the 
mass in computing the equivalent KV damping ratio of Eq. 5 

(B 11). The resulting expression for the KV damping ratio in 
terms of the complex conjugate eigenvalues taken from the 
KVMB system is 

10 

(B12) 

28 
For an elemental volume of soil represented by a solid 

perforated by uniform, parallel, cylindrical pores, the net flow 
velocity out of a cross section including many pores is 

(B16) 

where n=porosity for the given volume. For our element of 
length L, and cross-sectional area, A, Darcy's equation is 
given by 

(Bl7) 

On the other hand, there is no single correct answer for which 
KVMB mass to employ in Eq. (B 11). Two choices are the sum 

15 where Q=volumetric flow rate; and Kd=hydraulic conductiv­
ity (units of meter/second). Equating the velocities, v, in Eqs. 
(B 16) and (B 17), we can solve for hydraulic conductivity in 
terms of pore size and the other model parameters 

of the water and frame masses, or the frame mass alone. The 
former makes sense for coupled motion, the later for 
uncoupled. Fortunately, for porosities likely to be encoun- 20 

tered in most soils, the difference between these two options 
will be small. In this paper, the combined mass of water plus 
frame has been used to compute the KVMB damping ratio. 

FIG. 21 shows the equivalent KV damping ratio as a func­
tion of the KVMB damping ratio. Curves are shown for 25 

different mass ratios between the frame and water. Note that 

(BlS) 

This result is the same as that given by Bear (1972) (see p. 
165). Bear made the point that the 32 in the denominator is 
"meaningless," and that some writers scale the 32 by a "tor­
tuosity" factor which scales the representation to a real soil in 
which the pores are not parallel or cylindrical, and a diverse 

as the fluid mass declines (larger mass ratio), the curve maxi­
mum shifts down and to the left. A decrease in mass ratio 
would correspond to a decline in porosity for a soil. It also 
suggests that replacing water with a less dense fluid ( say air) 
will produce less viscous damping. 

In the next section, the KVMB dashpot will be related to 
damping in the mauner which Biot approached the problem, 

30 size of pores exist. This last point leads one to conclude that 
o is meant to be an "effective" pore diameter, representative of 
the actual pore diameters. Essentially, multiplying 32 by a 
tortuosity only affects the relationship between Kd and 0. 

a capillary tube soil model. The partitioning of the frame and 35 

water masses will be based on porosity and the assumption of 
a saturated soil. The development is focused on describing 
shear motion and shear waves (not compressional waves). 
Relating KVMB Damping to Permeability 

We follow the model proposed by Biot (1956a) in his work 40 

on wave propagation. A pore is represented by a right -circular 
cylinder of diameter, 0. The head loss, hJl for fluid flow in the 
pore is then given by the Darcy-Weisbach equation 

45 
(B13) 

where L=pore length; Vs =specific flow velocity in the pore; 
g=acceleration due to gravity; and f=friction factor. We fol- 50 

low Biot's example, and assume laminar flow. Thus, we let 
the friction factor be given in the usual way 

(B14) 55 

Where R=Reynolds number; Pw =pore fluid density; and 
fl=pore fluid dynamic viscosity (units of Pals). Substituting 60 

Eq. (BI4) into Eq. (B13) we have 

Biot (1956a) gives a dissipation coefficient in his Eq. (6.8) 

(B19) 

where we have used the current notation for porosity. Biot 
refers to K as Darcy's coefficient of permeability. This is in 
fact the absolute permeability (units of meter2

), and is related 
to our hydraulic conductivity by 

(B20) 

Further, Biot's Eq. (7.11) gives b for cylindrical pores as 

(B2l) 

Ifwe substitute Eq. (B20) into Eq. (BI9), we obtain 

(B22) 

(BlS) Substituting Kd from Eq. (BI8) into Eq. (B22), we obtain 
65 equation Eq. (B21), thus illustrating that our Kd of Eq. (B 18) 

is in exact agreement with Biot's paper, and his assumptions 
at low frequencies and laminar flow. 
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Biot's dissipation factor, b, is the coefficient of a tenn in his 
wave Eq. (6.7). That is, b=coefficient of the term which is the 
difference between the fluid and frame velocities. Thus, b 
plays the role of a dashpot connected between the frame and 
water masses of our FIG. 19(a). It is not, however, the lumped 5 

dashpot value. We note that b has units of kilogramlsecond 
per mete~, while an ideal dashpot elements has units of 
kilograms/second. Biot's damping coefficient is to a dashpot 
damping value as density is to mass. To obtain the ideal, 
lumped, components (spring, dashpot, and mass), we need to 10 

integrate the specific properties over a common volume of 
material being represented. 
Detennining Spring, Mass, and Dashpot for a Volume 

Consider an elemental volume of cross-sectional area, A, 
and length, L, as shown in FIG. 22. For a simple shear due to 15 

a traction F/A, and a frame material with shear modulus, Gf 
we have 

Solving for the spring constant, we have 

k = GfA 
L 

(B23) 20 

25 

(B24) 

30 
To emphasize the fact that two different coupling condi­

tions may result in the same KV damping ratio, three points 
have been annotated in FIG. 23. Point A corresponds to maxi­
mum damping obtainable for a porosity of 30%. Point B 
corresponds to a largely coupled condition, and point C to a 
largely uncoupled condition which produce the same value of 
equivalent KV damping ratio (1;==0.0135). 

FIG. 24 gives the corresponding particle velocity time 
histories for the fluid and frame motions for the three cases 
indicated by A, B, and C in FIG. 23. For the point B case 
(Kd=0.002 mls), the motions are closely coupled, and the 
particle velocities are almost together. The slight difference in 
velocity between frame and water results in an equivalent KV 
damping ratio of O. 013 5. At the other extreme, case C, there is 
a significant difference in the frame and mass velocities. 
However, the equivalent KV damping ratio is only 0.0135 
since the hydraulic conductivity is large (Kd=0.06 mls). The 
point is that the combined larger velocity difference and 
larger effective pore diameter in case C results in the same 
frictional loss that results from smaller pore diameters with 
less relative velocity between fluid and frame. The maximum 
damping occurs at point A (Kd=0.0109 mls), where the com­
bined pore diameter and relative velocity difference produce 
a maximum in the viscous friction. 

For the three cases shown in FIG. 24 the Eq. (B8) metric 
was computed to assess the match between the KV and 
KVMB displacement time histories. The largest difference 
(poorest match) was for point A, and resulted in an angle of 
8=2.04 0. If the two displacement time histories were to be 

For our KVMB dashpot, we have 

30 plotted here, they would appear as one, making this an accept­
able match. The best match was for point C (8=0.036°). Point 
B matched with a metric of 8= 1.4 7°. 
KV Damping Ratio Versus Frequency 

d = bAL = ( n2::w }AL) 
(B2S) 35 

This final example illustrates the effect of frequency on the 
KV damping ratio. In this thought experiment, the porosity is 
held at 30%. The sample length was varied to produce a range 
of natural frequencies for the vibrating soil element. 

The frame and water masses follow from porosity and the 
specific gravity of the solid, Gs ' 

They are respectively, 

(B26) 

FIG. 25 shows the equivalent KV damping ratio as a func­
tion of natural frequency for three cases of hydraulic conduc-

40 tivity (0.002, 0.0109, 0.060mls corresponding to B,A, andC 
of FIG. 23). At 50 Hz, points Band C plot at the same point, 
the intersection of the Kd=0.06 and Kd=0.002 mls curves. 
Points Band C produce the same damping, but for the differ-

(B27) 45 
ent reasons explained in the previous section (B is largely 
coupled, C is largely uncoupled motion between fluid and 
frame). FIG. 25 is simply another way oflooking at the same 
situation. What is different in this view is the effect of fre­
quency on the equivalent KV damping ratio. The theory pre­
dicts that at low frequencies (left of a curve's apex), the 

KV Damping Ratio Versus Hydraulic Conductivity 
FIG. 23 illustrates the mapping at a single frequency, 50 

Hz. In this thought experiment, we consider a single element 
of soil with length L. For a desired natural frequency, W, we 
can detennine the length of the required volume, L, stiffness­
mass ratio as follows: 

(B2S) 

where frequency, W, is in rad/s. We can obtain the hydraulic 
conductivity by solving Eq. (25) for Kd 

(B29) 

50 motion between fluid and frame is largely coupled. At high 
frequencies (right of a curve's apex), the motion is largely 
uncoupled. A crude analogy would be to consider a table with 
dishes resting on a tablecloth. The largely uncoupled, high­
frequency case is analogous to a waiter snapping the table-

55 cloth off a table without disturbing the dishes (large relative 
motion between tablecloth and dishes). The largely coupled, 
low-frequency case is analogous to slowly pulling on the 
tablecloth. The dishes would be dragged along with the table­
cloth. 

60 

Conclusions 

ExampleB 

where the dashpot value, d, is varied over a range of values to 65 

produce FIG. 23. Curves are computed for selected porosity 
values of 10, 30, and 50%. 

The (KV) model is widely employed in soil dynamics, 
consolidation theory, and ground water flow. While the KV 
dashpot represents the viscous interaction of pore fluids with 
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Yu Y2' Y3=eigenvalues of KVMB representation; 
o=pore diameter (m); 
Au A2=eigenvalues of KV representation (complex conju­

gate pair of KVMB); 
fl=absolute viscosity of pore fluids (Pa s); 
S=damping ratio (unitless); 
Pframe=mass density offrame (kglm3); 
pw=mass density of water (1,000 kg/m3); and 

frame, there is no allowance for separate motion between the 
fluid in frame (the masses are considered to be lumped 
together as a single unit). The KVMB model presented here 
permits the fluid and frame masses to have independent 
motion, and relates the dashpot connecting them to soil per- 5 

meability. The two models (KV and KVMB) have been 
mapped through the eigenvalues of the decoupled differential 
equations, pennitting the continued use of the KV model to be 
related to the KVMB and soil penneability (provided that 
porosity or void ratio is known). 

Wn =2Jtfn natural frequency of soil element in thought 
10 experiment (radls). 

The theory predicts the following: 
1. For a given porosity, there will be a maximum KV 

damping (point A in FIG. 23 or 25). This is the point 
where the difference between KV and KVMB represen­
tations is largest, but always acceptable (8~5°). It is the 15 

point where the combination of significant relative 
motion between fluid in frame combines with a medium 
pore size to maximize equivalent KV damping. 

ExampleC 

Programming Example 

KD-4X.sci 
clear 
II P. Michaels<pm@cgiss.boisestate.edu> 14 Oct. 2006 
II Copyright (c) 2006 Paul Michaels, all rights reserved 
II KD-4X.sci Scilab 4.0 version Penneability Computation 
II http://www.scilab.org/ Web page to obtain Scilab 
IIKVMB Damping ratio for a given dashpot function 
function [delta,frequ ] =KVMB ( dl) 
II ODE in matrix fonn 

2. Below point A, there will be two theoretical cases which 
produce the same KV damping. One is a largely coupled 20 

condition (small pores, small relative velocity between 
frame and fluid), and the other is a largely uncoupled 
condition (large pores, larger relative velocity between 
frame and fluid). See points B and C of FIG. 23 for 
example. 25 II dl =dashpot value kgls 

Ilx-frame; xdot-frame; xdot-fluid 3. At low frequencies, to the left of the KV damping ratio 
apex, the motion will be largely coupled. 

4. At high frequencies, to the right of the KV damping ratio 
apex, the motion will be largely uncoupled. 

Notation 

ExampleB 

The following symbols are used in this paper. 
A=cross-sectional area of soil element in thought experi-

ment (m2); 
b=Biot dissipation coefficient (kg/s m3); 
c=dashpot constant for KV model (kg/s); 
d=dashpot constant for KVMB model (kg/s); 
f=friction factor in a cylindrical pore (unitless); 
fn =natural cyclic frequency of soil element (Hz); 
Gf=shear modulus offrame (Pa); 
Gs =specific gravity of soil solids (unitless); 
g=acceleration due to gravity (9.81 m/s2); 
hf=head loss in a cylindrical pore (m); 
Kd=hydraulic conductivity (m/s); 
k=KV spring (N/m); 
K=absolute penneability M2); 
kf=spring constant offrame (N/m); 
L=length of soil element in thought experiment (m); 
m=KV mass (kg); 
mf=frame mass for KVMB model (kg); 
mw =water mass for KVMB model (kg); 
n=porosity (unitless); 
R=Reynolds number for flow in a cylindrical pore (unit-

less); 
t=time (s); 
u=particle displacement ofKV mass (m); 
u=particle velocity ofKV mass (m/s); 
uf=particle displacement of frame in thought experiment 

(m); 
uf=particle velocity of frame in thought experiment (m/s); 

II dl =KVMB dashpot value, delta=equiv. KV damping ratio 
ml =Mw; Ilwater mass 
m2=Mf; Ilframe mass 

30 A=[O 1 0; ... 
-kf/m2 -dllm2 dllm2; ... 
o dll/ml -dllml]; 

[B,x]=spec(A); 
IIA=B*x*inv(B) 

35 Ileigenvalues from diagonal ofx 
for jj=1:3 
lambda(jj)=x(jj ,jj); 
end Iinext jj 
Ilframe natural frequency 

40 fnf=sqrt(kf/m2); Ilradis 
Iiselect eigenvalues for frame component of motion 
j=l; 
jselect=zeros(2, 1); 
for jj=1:3 

45 tst(jj)=abs(fnf-abs(imag(lambda(jj)))); 
end I Inext jj 
target=min(tst); 
for jj=1:3 
if tst(jj )==target then 

50 jselect(j)=jj; 
j=j+l ; 
endllendif 
end Iinext jj 
lambda 1 =lambda(jselect(1 )); 

55 lambda2=lambda(jselect(2)); 
II compute KV equivalent damping ratio from 2 eigenvalues 
delta=real( abs(lambdal +lambda2)1(2 *sqrt 
(lambda 1 *lambda2))); 
frequ=real(abs(imag(lambda2))12/% pi); 

60 endfunction 
function [drv]=deriv(x) 
Iinumerical derivative 
ptrb=.I; 

Uw =particle velocity of water in thought experiment (m/s); 
v=net flow velocity of fluids in a cross-section of pores 65 

f1 =KVMB(x-ptrb*x); 
f2=KVMB(x+ptrb*x); 
drv=(f2-f1 )/(2*ptrb*x); (m/s); 

Vs =specific flow velocity in pore (m/s); endfunction 
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function [x] =Iinesrch( dmin,dmax) 
xl=dmin; 
x2=dmax; 
xm=(x2+xl)/2; Ilmidpoint of bracket 
tol=1.E-19; 
Fm=deriv(xm); 
j=O; 
Ilbisection search 
while abs(Fm»tol & j<l 00, 
j=j+l; 
FI=deriv(xl); 
Fm=deriv(xm) 
F2=deriv(x2); 
ifsign(FI)==sign(Fm) then 
xl=xm; 
FI=Fm; 
xm=(x2+xl )/2; 
else 
x2=xm; 
F2=Fm; 
xm=(x2+xl )/2; 
endllendif 
end Ilendwhile 
ifj==100 
disp("line search failed" +string(jrec)) 
end 
x=xm; 
endfunction 
Ilbracket determination function 
function [dal ,da2,db I ,db2,dpeak ]=bracket( dmin,dmax) 
lifind peak damping ratio 
dpeak=linesrch( dmin,dmax); 
dal=dmin; 
da2=dpeak; 
dbl=dpeak; 
db2=dmax; 
endfunction 
Iidefine inline objective functon for bisection search 
function [F] =0 bj f( d) 

else 
x=-l; 
end 
endfunction 

34 

5 II -------start of program----------­
mnn=input('enter well name, 2char', 's'); 
fname=umn+"porsm5.dar'; 
I Ifname="x5porsm5.dar'; 
fpl =file('open', fname, 'old'); 

10 data=read(fpl,-1,3); 
[nrow,ncol]=size(data); 
for jrec= I :nrow 
Ilelevation of sample convert to meters 
elev(jrec )=data(jrec,2)*0.3048; 

15 por(jrec)=data(jrec,3); Iisample porosity 
end Iinext jrec 
file(' close',fp I); 
N=nrow; Iisave number of porosity values 
meanpor=mean(por); Ilaverage porosity (entire log) 

20 stdpor=stdev(por); Iistdev porosity (entire log) 
PorE=1.96*stdpor; 1195% confnormal dist porosity 
fname="casol.dat"; 
fp2=file(' open' ,fname,' old'); 
casol=read(fp2,-1,9); 

25 file(' closet,fp2); 
[nrow,ncol]=size( casol); 
CI=casol(:,I); Iistiffness 
C2=casol(:,2); lidamping 
weight=casol(:,8); balance=casol(:,9); 

30 CIE=casol(:,3); Iistdev c1 
C2E=casol(:,4); Iistdev c2 
CIE=1.96*CIE; 1195% confnormal dist. 
C2E=1.96*C2E; 1195% confnormal dist. 
[emin,kmin]=min(elev); 

35 [emax,kmax]=max(elev); 
txtl=['SDF Frequency Hz','BVAS Emax','BVAS Emin']; 
EMX=sprintf("%.I f',emax); 
EMN=sprintf("%.I f',emin); 
sig=evstr(x_mdialog(,Enter Parameters' ,txtl [' 12';EMX; 

Ild=KVMB dashpot value, drKv is observed KV damping 40 EMN])); 
ratio 
[delta,frequ ] =KVMB ( d); 
F=delta-drKV; 
endfunction 
function [x]=bisec(xl,x2) 
xm=(x2+xl)/2; Ilmidpoint of bracket 
tol=O.OOOOOO1 ; 
Fm=objf(xm); 
j=O; 
Ilbisection search 
while abs(Fm»tol & j<l 00, 
j=j+l; 
FI=objf(xl); 
Fm=objf(xm) 
F2=objf(x2); 
ifsign(FI)==sign(Fm) then 
xl=xm; 
FI=Fm; 
xm=(x2+xl )/2; 
else 
x2=xm; 
F2=Fm; 
xm=(x2+xl )/2; 
endllendif 
end Ilendwhile 
ifj-=100 
x=xm; 

if length(sig)<3 then abort; end Iluser pressed cancel 
Iluser selected resonator frequency for mapping 
freqdr=sig(1 ); 
uemin=sig(3); Iluser selected min elev 

45 uemax=sig(2); Iluser selected max elev 
lifind min and max elevations 
dfm=abs( elev-uemin); 
dfX=abs( elev-uemax); 
[ea,jmax ]=min( dfm); 

50 [eb,jmin]=min(dfX); 
I I convert frequency to radians/s, compute L=length resonator 
wdr=freqdr*2*% pi; II radian frequency for damping ratio 
L=sqrt(CI)/wdr; //length of vibrator 
dratioKV=(wdr*C2)/(2*CI); II damping ratio 

55 II error bar on KV dratio 
tl=CIE**2; 
t2=wdr**2; 
t4=C2**2; 
t5=CI **2; 

60 t6=t5**2; 
tlO=C2E*2; 
sigmadr=sqrt(tl *t2 *t4/t6+tl 0*t2/t5)/2; 
Ilcompute mean porosity in user selected interval 
umeanpor=mean(por(jmin:jmax)); Ilaverage porosity 

65 ustdpor=stdev(por(jmin:jmax)); Iistdev porosity 
uPorE= 1.96*ustdpor; 1195% conf normal dist porosity uelev= 
(uemin+uemax)/2; Ilelevation of user selected interval 
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II ------------Compute Permeability------------------­
A=I; II area of vibrator in meters'2 
rhow=1000; Ilmass density of water 
Gs=2.67; Iispecific gravity of solids 
L=sqrt(Cl)/wdr; Illength of vibrator 
IIKVMB Model 
Mf=(1-umeanpor)*Gs*rhow*A*L; Ilmass of frame 
Mw=umeanpor*rhow* A *L; Ilmass of water 
Mkv=Mf+Mw; IIKV mass, coupled 
kf=(Cl *Mkv)l(L *L); Iispring 
fHZ=sqrt(kf/Mkv)/(% pi*2); Ilfrequency implied (Hz) 
II --------------------KVMB Analysis----------------------­
Iiset up bracket for search 
drKV=dratioKV; 
KDmax=100; II max permeability m/s 
KDmin=1.E-6; II min permeability m/s 
dmax=(A *L *rhow*9.81 *umeanpor'2)1KDmin; Illower 
bound dashpot 
dmin=(A *L *rhow*9.81 *umeanpor'2)1KDmax; Ilupper 
bound dashpot 
lifind brackets, coupled and uncoupled search 

[dal ,da2,db 1 ,db2,dpeak ]=bracket( dmin,dmax); 
tst=KVMB( dpeak); Ilapex of curve=KVMB( da2)=KVMB 

(dbl) 
drpksv=tst; 
if drKV>tst then 
KDa=O; 
KDb=O; 
drasv=O; 
drbsv=O; 
sigmaKDb=O; 
sigmaKDa=O; 
else 

lido bisection search 
[xa]=bisec( dal,da2); 
dr=KVMB(xa); 
if xa==-1 then dr=-I; end 
drasv=dr; 
tmpl =(A *L *rhow*9.81 *umeanpor'2); 
KDa=tmpllxa ; Ilpermeability m/s 
tmp2=-tmpll(xa*xa); Iiderivative ofKDa wrt dashpot, xa 
tmp3=deriv(xa); Iiderivative of damping ratio wrt 

dashpot 
Iistdev for permeability, KDa 

sigmaKDa=sqrt((tmp2/tmp3) '2*sigmadr'2); 
[xb ]=bisec( dbl,db2); 
if xb==-1 then dr=-I; end 
dr=KVMB(xb ); 
drbsv=dr; 
tmpl =(A *L *rhow*9.81 *umeanpor'2); 
KDb=tmpllxb ; Ilpermeability m/s 
tmp2=-tmpll(xb*xb); Iiderivative ofKDb wrt dashpot, xb 
tmp3=deriv(xb); Iiderivative of damping ratio wrt 

dashpot 
Iistdev for permeability, KDb 

sigmaKDb=sqrt((tmp2/tmp3) '2*sigmadr'2); 
end 

ELV=uelev; 
fp3=file(' open', "kd4.out", 'unknown'); 

36 
"Coupled (b_case): DRb=%.6f KDb=%.5f(+I-%.4 
fm/s)" ... , drbsv,KDb,sigmaKDb*1.96); 
msg4=sprintf( ... 
"UnCoupled (a_case): DRa=%.6f KDa=%.5f(+I-%.4 

5 fm/s)" ... , drasv,KDa,sigmaKDa*1.96); 
msg5=sprintf( ... 
"Porosity: mean=%.3f (+I-%.3f)",umeanpor,ustdpor* 1.96); 
msg6=sprintf( ... 
"Elevation Range: %.2fto %.2f(m)",uemin,uemax); 

10 msG=[ msgO;msgl ;msg2;msg3 ;msg4;msg5 ;msg6]x_mes­
sage _modeless([ msgO,msg 1 ,msg2,msg3 ,msg4,msg5, 
msg6]); 
write(fp3,MSG, '(a)'); 
file('close' ,fp3); 

15 Therefore, as may be understood from the above disclosure 
and Examples, the invention may comprise methods, appara­
tus, and/or programming are disclosed for engineering solu­
tions, for example, in the areas of production from oil wells, 
grouting for soil improvement, treatment of contaminated 

20 soils, production from water wells, and waste disposal in 
landfills, wherein permeability of a fluid through a saturated 
material is determined by measuring the dynamic response of 
that saturated material to shaking vibrations and/or shear 
wave propagation, and then mapping the dynamic response 

25 (preferably, viscoelastic stiffness and damping properties) to 
an invented model (called "KVMB") that yields the property 
of permeability. The preferred embodiments may use shear 
waves, inertial effects, and/or transmission effects, but pref­
erably not compression, to force fluids through the pores. The 

30 mapping preferably predicts two possible mappings to per­
meability, coupled and uncoupled. Unlike prior art seismic 
methods known to the inventor, the methods of the preferred 
embodiments are both internally consistent and directly 
related to known laws of physics rather than dependent on 

35 empirical calibrations. In use, for example, one may use a 
porosity log (conventional neutron or sonic) and recordings 
ofSH-waves to obtain damping ratio, followed by locating of 
the damping ratio on a KVMB map that depends on porosity, 
and choosing of one of the two possible permeabilities indi-

40 cated by the mapping, wherein the best choice is typically the 
largely coupled case. 

Although this invention has been described above with 
reference to particular means, materials and embodiments, it 
is to be understood that the invention is not limited to these 

45 disclosed particulars, but extends instead to all equivalents 
within the broad scope of the following claims. 

The invention claimed is: 
1. A method of determining permeability ofliquid through 

a liquid-saturated solid material, the method comprising: 
50 a) performing vibration testing of a sample of said liquid in 

said liquid-saturated solid material, wherein said vibra­
tion testing provides porosity of the sample, mass of the 
liquid, mass of the solid material, and a measured Kevin­
Voigt (KV) damping ratio for the sample, wherein 

55 damping ratio and dashpot are related by equation (1): 

Damping ratio~Dashpot!(2V7iXm) (1), 

wherein m=total mass of liquid and solid material, and 
k=stiffness defined by equation (2), 

msgO=mnn+"SOLUTION (+1-95% conf)"; 60 
iP(shear modulus of solid material'A)/L (2), msgl =sprintf( ... 

"Elevation=%.2f(m) Freq=%.Of(Hz) ResonatocL=%.2f 
(m)" ... , ELY,freqdr,L); 
msg2=sprintf( ... 
"Damping Ratios: Peak=%.6f Wave=%.6f (+1-%.5f)" ... , 65 

drpksv,dratioKY,sigmadr* 1.96); 
msg3=sprintf( ... 

wherein A=cross-sectional area of said sample volume, 
and L=length of said sample volume; 

b) Mapping multiple calculated Kelvin-Voigt-Maxwell­
Biot (KVMB)-determined equivalent KV damping ratio 
versus multiple assumed trial KVMB-dashpots, by the 
steps of: 
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5. A method as in claim 1, wherein said performing vibra­
tion testing of a sample of said liquid in said liquid-saturated 
solid material is done in a laboratory experiment. 

assuming multiple trial KVMB dashpot values d, and cal­
culating the three eigenvalues corresponding to a 
decoupled version of equation (3) for each assumed trial 
KVMB dashpot value: 6. A method as in claim 1, wherein cross-sectional area of 

5 said sample volume A is an assumed cross-sectional area. 

0 

k d 

Mf Mf 

0 

d 
+-

Mf 

(3) 
7. A method as in claim 1, wherein cross-sectional area of 

said sample volume A is set at unity . 

fr[:~[= d 
0 +-

d 
. [:~ [ 8. A method of determining permeability ofliquid through 

a liquid-saturated solid material, the method comprising: 
10 a) performing a shear-wave propagation testing survey of a 

Mw Mw 

wherein uf=solid-material-mass displacement, uf=solid­
material-mass velocity, and Uw =liquid-mass velocity, 15 

Mf=mass of said solid material, Mw =mass of said liquid, 
and d=assumed trial KVMB dashpot value, and wherein 
k is defined by equation (2); 

retaining two complex conjugate eigenvalues Al and A2 of 
said three eigenvalues of said decoupled version of equa- 20 

tion (3) for each assumed trial KVMB dashpot, inserting 
said two complex conjugate eigenvaluves into equation 
(4) to compute a KVMB-determined equivalent KV 
damping ratio S, and discarding the third of said three 
eigenvalues: 25 

(4) 

30 

mapping said KVMB-determined equivalent KV damping 
ratios S versus the multiple assumed trial KVMB dash­
pots, determining the KVMB-determined equivalent 35 

KV damping ratio that most-closely matches the 
observed KV damping ratio and determining from said 
mapping a coupled KVMB dashpot solution and an 
uncoupled KVMB dashpot solution for said most­
closely matched KVMB-determined equivalent KV 40 

damping ratio; 
c) computing permeability Kd of said liquid through said 

liquid-saturated solid material by inserting said coupled 
KVMB dashpot solution into equation (5): 

(5) 

wherein n=said porosity, g=acceleration due to gravity, 
Pliquid=mass density of said liquid, d=said coupled 
KVMB dashpot solution, A=cross-sectional area of said 
sample volume, and L=length of said sample volume. 

45 

50 

2. A method as in claim 1, wherein said mapping multiple 55 

calculated Kelvin-Voigt-Maxwell-Biot (KVMB)-determined 
equivalent KV damping ratio versus multiple assumed trial 
KVMB-dashpots is performed by a bisection search. 

3. A method as in claim 1, wherein said mapping provides 
a curve of calculated Kelvin-Voigt-Maxwell-Biot (KVMB)- 60 

determined equivalent KV damping ratio versus assumed 
trial KVMB-dashpot, and said curve is a downwardly-con­
cave curved with a peak between said coupled KVMB dash­
pot solution and said uncoupled KVMB dashpot solution. 

4. A method as in claim 1, wherein said performing vibra- 65 

tion testing of a sample of said liquid in said liquid-saturated 
solid material is done in a field experiment. 

sample volume of said liquid in said liquid-saturated 
solid material, wherein said survey provides an observed 
KV damping ratio by equation (1): 

w·C2 
KVdamping ratio = --, 

2·C j 

(1) 

at an angular frequency C!J (rad/s) within the seismic source 
frequency band, stiffness C1 (m2/s2), and damping C2 
(m2/s), all determined from shear-wave velocity disper­
sion and spatial propagation amplitude decay of said 
shear-wave propagation testing survey under the gov­
erning I-D wave equation (2): 

(2) 

wherein u is particle displacement, x is spatial coordinate 
of wave propagation direction, and t is time; 

b) computing a volume length L by equation (3): 

{C; 
L=--; 

w 

(3) 

c) laboratory testing of said sample volume to determine 
specific gravity of said solid material Gsolids' and mass 
density of said saturated liquid Pliquid, and said sample 
volume porosity n; 

d) Mapping multiple calculated Kelvin-Voigt-Maxwell­
Biot (KVMB)-determined equivalent KV damping ratio 
versus multiple assumed trial KVMB-dashpots, by the 
steps of: 

assuming multiple trial KVMB dashpot values, d, and cal­
culating the three eigenvalues corresponding to a 
decoupled version of equation (4) for each assumed trial 
KVMB dashpot value: 

0 0 (4) 

fr[:~ [= 
k d d 

. [:~ [ +-
Mf Mf Mf 

d d 
0 +-

Mw Mw 

wherein uf=solid-material-mass displacement, uf=solid­
material-mass velocity, and Uw =liquid-mass velocity, 
Mf=mass of said solid material, Mw =mass of said liquid, 
and d=assumed trial KVMB dashpot value, and wherein 
k is defined by equation (5): 

iP(shear modulus of solid material·A)/L (5), 
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wherein A=cross-sectional area of said sample volume, 
and L=length of said sample volume; 

wherein flsolid is the shear modulus of the solid material, 
Psolidis the mass density of the solid material, and Pw is 
the mass density of water; 

retaining two complex conjugate eigenvalues Al and A2 of 
said three eigenvalues of said decoupled version of equa­
tion (4) for each assumed trial KVMB dashpot, inserting 
said two complex conjugate eigenvaluves into equation 
(6) to compute a KVMB-determined equivalent KV 10 

damping ratio S, and discarding the third of said three 
eigenvalues: 

(6) 15 

40 

(6) 

wherein n=said porosity, g=acceleration due to gravity, 
Pliquid=mass density of said liquid, d=said coupled 
KVMB dashpot solution, A=cross-sectional area of said 
sample volume, and L=length of said sample volume. 

9. A method as in claim 8, wherein said mapping multiple 
calculated Kelvin -Voigt -Maxwell-Biot (KVMB )-determined 
equivalent KV damping ratio versus multiple assumed trial 
KVMB-dashpots is performed by a bisection search. 

10. A method as in claim 8, wherein said mapping provides 
a curve of calculated Kelvin-Voigt-Maxwell-Biot (KVMB)­
determined equivalent KV damping ratio versus assumed 
trial KVMB-dashpot, and said curve is a downwardly-con­
cave curved with a peak between said coupled KVMB dash­
pot solution and said uncoupled KVMB dashpot solution. 

11. A method as in claim 8, wherein said performing vibra­
tion testing of a sample of said liquid in said liquid-saturated 
solid material is done in a field experiment. 

mapping said KVMB-determined equivalent KV damping 20 

ratios S versus the multiple assumed trial KVMB dash­
pots, determining the KVMB-determined equivalent 
KV damping ratio that most-closely matches the 
observed KV damping ratio and determining from said 
mapping a coupled KVMB dashpot solution and an 
uncoupled KVMB dashpot solution for said most­
closely matched KVMB-determined equivalent KV 
damping ratio; 

12. A method as in claim 8, wherein said performing vibra­
tion testing of a sample of said liquid in said liquid-saturated 

25 solid material is done in a laboratory experiment. 

e) computing permeability Kd of said liquid through said 
liquid-saturated solid material by inserting said coupled 
KVMB dashpot solution into equation (6): 

13. A method as in claim 8, wherein cross-sectional area of 
said sample volume A is an assumed cross-sectional area. 

14. A method as in claim 8, wherein cross-sectional area of 
said sample volume A is set at unity. 

* * * * * 
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