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Spatial structure and inbreeding depression in
slickspot peppergrass, Lepidium papilliferum
(Brassicaceae)

Stephanie A. Billinge and lan C. Robertson

Abstract: In plants with limited pollen and seed dispersal, populations are often spatially structured such that neighboring
individuals are more closely related to one another than to distant individuals. Mating among close relatives, including
selfing, may lead to a reduction in reproductive performance through the effects of prezygotic mating barriers and inbreed-
ing depression. Studying 11 populations of slickspot peppergrass, Lepidium papilliferum (L.F. Hend.) A. Nels. and

J.F. Macbr (Brassicaceae), a rare mustard endemic to southwestern Idaho, we investigated whether small populations (16—
746 flowering individuals) exhibit spatial structure as previously reported for large populations (>3000 flowering individu-
als). Through hand-pollination experiments we found that percent fruit set increased with increasing distance between pa-
rents up to a distance of 3 m, and declined slightly but nonsignificantly at greater outcrossing distances. Self-pollinated
plants produced little or no fruit. Germination of seeds from the hand-pollination experiment revealed signs of inbreeding
depression in the offspring. Specifically, leaf length of developing seedlings increased significantly as a function of out-
crossing distance. Total leaf number showed a similar, yet statistically nonsignificant, response to outcrossing distance.
Overall, our experiments reveal spatial structuring and suggest the occurrence of inbreeding depression in small popula-
tions of L. papilliferum.
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Résumé : Chez les plantes ayant des dispersions de pollens et de graines limitées, on retrouve souvent des populations
structurées de telle facon que les individus voisins se cotoient plus étroitement que les individus distants. Les croisements
entre individus étroitement apparentés, incluant 1’autofécondation, peuvent conduire a une réduction des performances de
reproduction par les effets de barrieres de croisement pré-zygotiques et la dépression d’autofécondation. En étudiant 11 po-
pulations de la 1épidie papillée, Lepidium papilliferum (L.F. Hend.) A. Nels et J.F. Macbr (Brassicaceae), une moutarde en-
démique rare du sud-ouest de 1’'Idaho, les auteurs ont cherché a savoir si les petites populations (16 a 746 individus
fleurissants) montrent une structure de population comme précédemment rapportée pour de grandes populations (>3000 in-
dividus florissants). A I’aide d’expériences de pollinisation, ils ont constaté que le pourcentage de mise a fruit augmente
avec une augmentation de la distance entre les parents jusqu’a 3 m, et diminue 1égérement, mais de facon non significative
pour des distances de croisements externes plus grandes. Les plantes autofécondées produisent peu ou pas de fruits. La
germination des graines provenant de pollinisations manuelles montre des signes de dépression d’autofécondation chez les
descendants. Spécifiquement, la longueur des feuilles des plantules en développement augmente significativement en fonc-
tion de I’augmentation de la distance des autofécondations. Le nombre total de feuilles montre une réaction similaire en
fonction de la distance d’autofécondation, bien que non significatif. En général, les auteurs observent une structuration spa-
tiale et suggerent qu'une dépression d’autofécondation survient dans les petites populations du L. papilliferum.

Mots-clés : dépression d’autofécondation, hétérocroisement, pollinisation, structure spatiale.

[Traduit par la Rédaction]

Introduction

The extent to which organisms outcross can have a
profound effect on their reproductive success and fitness.
Mating among close relatives, including selfing, may lead
to a reduction in offspring number because of shared self-
incompatibility alleles in the parents, or a reduction in off-
spring fitness because of an increase in homozygosity and
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expression of deleterious alleles (Waser 1993). The latter
effect, known as inbreeding depression (Charlesworth and
Charlesworth 1987), is often reflected in plants by a reduc-
tion in seed production and germination, decreased growth
rates, increased offspring mortality, and reduced offspring
fertility (Charlesworth and Charlesworth 1987; Sobrevila
1988; Waser and Price 1989; Oostermeijer et al. 1995;
Byers 1998).

In spatially structured plant populations, neighboring
individuals often are more closely related to one another
than to distant individuals because of limited pollen flow
and seed dispersal. As a result, matings between neighbours
exhibit decreased fitness relative to more distant matings
(Levin 1984; Waser and Price 1989, 1994; Waser 1993;
Oostermeijer et al. 1995; Byers 1998). However, small pop-
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Table 1. Mixed Model ANOVA results for percent fruit set, seed mass, and percent germination.

Percent fruit set Seed mass Percent germination

Random effects Estimate SE Estimate  SE Estimate SE
Site 36.9 46.6 0.06 0.03 148.8 126.7
Site X treatment 18.0 68.2 0.001 0.001
Residual 688.8 101.3 0.013 0.001 769.9 131.9
Fixed effects df F df F df F
Treatment 5,25.7 19.74 4,139 2.39% 4,70.2 1.47¢

“P < 0.001

bp =10.10

‘P =022

ulations are generally expected to exhibit less spatial struc-
ture than large populations because of reduced genetic vari-
ability and higher levels of inbreeding, particularly if the
populations are genetically isolated (Ellstrand and Elam
1993). Decreases in fitness caused by inbreeding are of par-
ticular concern for rare species, which are often threatened
with local extinction because of demographic processes as-
sociated with small population size (Ellstrand and Elam
1993; Lande 1995; Byers 1998). Thus, the relationship be-
tween outcrossing distance and offspring fitness may have
important consequences for rare species because any de-
crease in offspring fitness can threaten the species’ long-
term viability (Ellstrand and Elam 1993; Byers 1998).

Here we use various cross pollination distances to exam-
ine spatial structure and inbreeding depression in slickspot
peppergrass, Lepidium papilliferum (L.F. Hend.) A. Nels.
and J.F. Macbr., a rare mustard endemic to sagebrush steppe
habitat in southwest Idaho. Within sagebrush-steppe habitat,
L. papilliferum is restricted to microsites known as slick
spots — small depressions of soil characterized by their
high levels of clay and salt, as well as by subsurface water
retention that is higher than that of surrounding areas
(Quinney 1998). Currently only 60-70 sites (sites = popula-
tions for the purposes of our study) are known to contain
L. papilliferum, many of which support no more than a few
hundred individuals (Colket 2005). Declines in the plant’s
numbers, including the extirpation of 21 populations since
1892, have been attributed to the fragmentation, destruction,
and overall degradation of sagebrush-steppe habitat through-
out the plant’s range (Moseley 1994).

Lepidium papilliferum is a monocarpic plant that relies
primarily on outcrossed pollination mediated by insects
(Robertson and Klemash 2003), although it has a limited
ability to self pollinate (Billinge 2006; Stillman 2006).
Fruits produced from fertilized flowers reach full size ap-
proximately 2 weeks after pollination (Robertson and Kle-
mash 2003). Each fruit typically bears two seeds that drop
to the ground when the fruit dehisces in midsummer. Seeds
that drop to the ground can remain viable within the seed
bank for up to 11 years (Meyer et al. 2005).

Studying three relatively large populations of
L. papilliferum (>3000 flowering individuals), Robertson
and Ulappa (2004) analyzed fruit set as a function of out-
crossing distance and concluded that those populations were
spatially structured. Self pollination resulted in only 12%
fruit set, whereas fruit set jumped significantly to 45% for
pollination distances of 75-100 m. Although these results
shed light on the spatial structure of large L. papilliferum

Fig. 1. Box plot chart showing fruit production as a function of
outcrossing treatment. The boxes represent the median, and 25th
and 75th percentiles, whereas whiskers represent the maximum and
minimum values. Different letters above bars indicate significant
differences among treatments. An asterisk indicates that the values
are not significantly different from zero. Numbers below labels in-
dicate sample size. C, control; S, self-pollination; NN, nearest-
neighbor pollination; AS, across-slick-spot pollination; Bss,
between-slick-spot pollination; Bsite, between-site pollination.
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populations, most populations of this rare species are sub-
stantially smaller and, in some cases, more isolated than
those used by Robertson and Ulappa. Thus, the first goal of
our study was to determine whether small L. papilliferum
populations exhibit spatial structure similar to that found in
large populations. Our second goal was to determine
whether L. papilliferum exhibits inbreeding depression.
Although fruit production, the only measure of reproduction
used by Robertson and Ulappa (2004), may be an important
component of a plant’s reproductive success, offspring from
crosses that yield similar amounts of fruit may differ in
other ways that affect parental fitness. Consideration of
seed mass, germination success, and seedling growth can
contribute to a more comprehensive picture of reproductive
performance (Waser and Price 1989; Waser 1993; Ooster-
meijer et al. 1995; Byers 1998). Therefore, in addition to
measuring percent fruit set as a function of outcrossing dis-
tance, we collected seeds from the crosses, germinated them,
and measured seedling growth and development.
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Materials and methods

Study sites

We conducted our study in 2005 and 2006 using 11
L. papilliferum populations from across the plant’s range.
Ten of the populations supported <750 flowering individuals
(mean = 204, range 16-746) and were considered small. The
other population had 3602 flowering individuals and was
considered large. Only one large population was included in
the study because two previous studies had established that
populations with over 3000 flowering plants were spatially
structured (Robertson 2004; Robertson and Ulappa 2004).
The large population was included for comparison with the
previous studies, and as a control for year in our compari-
sons between large and small populations. Germination and
growth studies were conducted in greenhouses at Boise State
University.

Spatial structure and inbreeding depression

We conducted an experiment to determine whether small
populations of L. papilliferum are structured in a manner
similar to that reported for large populations. At each site
we selected up to five slick spots containing L. papilliferum
(smaller populations often had fewer than five slick spots).
In each slick spot we selected up to six plants of similar
size and showing unopened flower buds. To prevent pollina-
tion by insects we placed cylindrical insect-proof cages
(constructed from 1 cm? hardware cloth covered with fine
0.25 mm? white mesh) over the plants before they flowered.
This cage design does not restrict plant growth or fruit pro-
duction in L. papilliferum (Robertson and Klemash 2003).

In slick spots where six plants were caged, we randomly
assigned each plant either to the control (C, no manipula-
tion) or to one of five hand-pollination treatments: selfing
(S), nearest neighbor (NN, cross pollination with plant <
1 m away), across slick spot (AS, cross pollination with
plant approximately 3 m away but within the same slick
spot), between slick spot (Bss, cross pollination with a plant
20-50 m away), and between site (Bsite, cross pollination
with a plant from another population 2.5-7 km away), with
none of the treatments being repeated within a slick spot.
For each hand pollination treatment we cut an inflorescence
from the pollen donor. We then contacted the anthers of one
donor flower to the stigma of one recipient flower on the
treatment plant. Ten flowers on an inflorescence of the re-
cipient plant were pollinated in this manner. We used each
pollen donor flower only once to pollinate a treatment
flower. We then tagged the inflorescence of the recipient
plant with a string for identification later in the summer.

When fewer than six plants per slick spot were available,
as was the case for some of the smaller populations, we as-
signed treatments in the following order of priority: S and
Bsite, NN, AS, C, and Bss. Self and Bsite treatments were
carried out at all sites to quantify selfing ability and to ver-
ify the plants’ ability to produce successful offspring using
pollen from distant populations. The intermediate distance
treatments (NN, AS, and Bss) were added to each slick spot
as plants were available to examine the spatial structure
within populations.

Two weeks after hand pollination we counted the number
of fruit produced on an inflorescence, and we measured the
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width of each fruit in situ using digital calipers. Previous
work revealed that fruits less than 1.5 mm in width do not
contain seeds (I.C. Robertson, unpublished data, 2005).
Therefore, only fruits 1.5 mm or wider were scored as suc-
cessful. In mid-July, when fruits were ready to dehisce, we
collected seeds from the crosses and stored them in paper
envelopes (one per plant) at room temperature. We weighed
the seeds on a Cahn C-35 microbalance, and then assigned
each seed a number unrelated to its treatment so that germi-
nation and growth measurements would not be subject to ex-
perimenter bias. We then stored the seeds at room
temperature and without light for 3 months. To promote ger-
mination we scarified seeds by rubbing them gently between
two sheets of 320 grit sandpaper. We then imbibed the seeds
with deionized water for 24 h on filter paper in Petri dishes,
and placed them in cold stratification at 4 °C for 8 weeks
with no light. Afterward, we planted the seeds 2-4 mm
deep in peat-based soil (Sunshine Professional Growing
Mix No. 3, Bellevue, Wash.) mixed with a micronutrient
fertilizer (Whitney Farms Life Link Smart Start Transplant-
ing Fertilizer [2—4-2], Scotts Miracle-Gro Co., Marysville,
Ohio), and placed them in a greenhouse maintained at
21 °C during the day and 10 °C at night, with a 14 h day-
light photoperiod. Following germination, we used digital
calipers to record the length of a specific leaf from each
seedling every three days for a total of 30 d. At each time
interval we also recorded the total number of leaves on
each plant.

Statistical analyses

We used SAS 9.1.3 (SAS Institute Inc. 2003) for all anal-
yses. For each of the crosses performed we used linear
mixed models to analyze percent fruit set, seed mass, and
percent germination. These models accounted for the varia-
tion within sites, assuming that populations are statistically
independent of each other. Owing to the limited availability
of plants at some sites, and because some plants died during
the course of the experiment, the data were not balanced
with respect to treatments and sites. The fixed effect in all
models was treatment (i.e., outcrossing distance). The ran-
dom effects included site, slick spot nested within site, and
(or) site x treatment interaction, depending on the outcome;
not all random effects could be fit to all outcomes as a result
of treatment balance across sites, or because of a lack of
variation caused by the effect. Therefore, we used Sat-
terthwaite’s adjustment to degrees of freedom for each of
the analyses (Milliken and Johnson 1992). To assess the fit
of the model, plots of the residuals were examined for nor-
mality and homogeneity of variance. Without an overall F
test for the site X treatment interactions, we examined
whether treatments differed between the large site and the
smaller sites by comparing estimated mean differences be-
tween the large site and the mean of the small sites. We es-
timated these differences as a specific linear contrast of the
model coefficients, and tested it against null using an ap-
proximate ¢ tests (SAS Institute Inc. 2003).

We fit a random coefficients model to leaf length and the
total number of leaves produced by a plant, which effec-
tively fits a trend to the plants’ growth and accounts for re-
peated observations on each plant. Data for this analysis
were natural-log transformed (0.5 was added to each meas-
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Table 2. Mixed model estimates of percent fruit set with respect to treatment for the large site and the

average of the small sites.

Treatment Estimate for large population  Estimate for combined small populations
Control (C) 59 (=125, 24.2) 9.0 (4.8, 22.9)
Self (S) 13.1 (-5.2, 31.5) 19.3 (8.9, 29.8)

Nearest neighbour (NN)
Across slick spot (AS)
Between slick spot (BSS)
Between site (Bsite)

48.1 (16.5, 79.7)
72.7 (55.6, 89.8)
65.0 (46.2, 83.7)
55.0 (35.6, 74.3)

54.5 (432, 65.9)
77.2 (63.8, 90.5)
68.9 (56.2, 81.6)
77.5 (62.3, 92.7)

Note: Values are means with 95% confidence limits in parentheses. No significant differences in estimates were

found between the large site and small sites (all P > 0.30).

ure to prevent errors when transforming values of zero). The
fixed effects were study day and treatment (the interaction
between them was assessed by AICc and subsequently
dropped (Burnham and Anderson 2002)). Total leaf number
was modeled by Poisson regression, accounting for repeated
measures on individual plants. No additional covariance
terms were included because of nonconvergence. Again the
fixed effects were treatment and day. We assessed the fit of
the model using residual plots for normality and homogene-
ity of variance.

Results

Table 1 provides the mixed-model analysis of variance re-
sults for percent fruit set, seed mass, and percent germina-
tion. There were significant differences among treatments
for percent fruit set only. Referring to Fig. 1, median percent
fruit set increased with increasing distance between parents
up to the across slick spot treatment, and declined slightly
at distances greater than the across slick spot treatment. As
expected, the control and selfing treatments were not differ-
ent from each other, but were significantly lower than the
other four treatments. The between slick-spot and between
site treatments were not significantly different from each
other, nor were they different from the across slick-spot or
nearest neighbor treatment; however the latter two were sig-
nificantly different from each other. Table 2 gives the
model-estimated percent fruit set by treatment for the large
site (KB) and the average of the small sites. Because none
of the contrasts between large and small sites were statisti-
cally significant (all P > 0.30), we did not further adjust the
P values for multiple comparisons.

Although we found no statistically significant effect of
treatment on seed mass or percent seed germination
(Table 1), the pattern of percent germination with respect to
treatment was similar to that found for percent fruit set
(Fig. 2). No pattern was evident between seed mass and
treatment. However, seed mass correlated positively with
percent germination and offspring leaf length (Pearson cor-
relation coefficients: percent germination, r = 0.38, P <
0.001; leaf length, r = 0.37, P = 0.01).

The analysis of variance results for the model of leaf
length are shown in Table 3. Leaf length in developing seed-
lings was significantly different across treatments (Fi4734) =
15.6, P < 0.0001) and over time (F[¢75 = 219.0, P <
0.0001). As outcrossing distance between parents increased,
mean leaf length in offspring increased (Fig. 3).

The total number of leaves on developing plants increased
significantly over time (GEE score x2 = 75.51,df = 1, P <

Fig. 2. Box plot chart showing percent germination as a function of
treatment. The boxes represent the median, and 25th and 75th per-
centiles, whereas whiskers represent the maximum and minimum
values. Different letters above bars indicate significant differences
among treatments. Numbers below labels indicate sample size. See
Fig. 1 caption for treatment acronyms.
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0.0001). Although there was no significant effect of treat-
ment on leaf number (GEE score 2 = 8.62, df = 4, P =
0.07), the general pattern for the effect of outcrossing dis-
tance on plant growth held to the extent that plants from the
selfing cross had the fewest leaves, whereas plants from the
between-site cross had the most leaves (Fig. 4).

Discussion

Percent fruit set in L. papilliferum increased as a function
of outcrossing distance up to the across slick spot treatment
(i.e., 3 m outcrossing distance), and then declined slightly,
but nonsignificantly, over larger distances. This pattern of
percent fruit set as a function of outcrossing distance is
similar to that reported by Robertson (2004) and Robertson
and Ulappa (2004), although in those studies outcrossing
distances between 1 and 75 m were not considered. The
rapid increase in percent fruit set we found over relatively
short outcrossing distances suggests either that genetic relat-
edness among individuals declines sharply as a function of
distance, or that L. papilliferum, while intolerant of high lev-
els of inbreeding (as experienced in selfing and nearest
neighbor pollination treatments), is tolerant of low levels of
inbreeding. Either way, because self-pollinated individuals
had low reproductive output in all populations studied, our
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Table 3. Analysis of variance results for models of leaf length.

Random effects Estimate SE

Site 0.0834 0.05
Variance within plant, at a given day 0.0001 0.0002
Variance within plant, between days 0.0004 0.0002
Residual 0.0313 0.002
Fixed effects df F P

Day 1, 67.5 219.0 <0.0001
Treatment (outcrossing distance) 4,734 15.6 <0.0001

Botany Vol. 86, 2008

Fig. 3. Least squares means estimates of offspring leaf length (+SE)
as a function of treatment and time. See Fig. 1 caption for treat-
ment acronyms.
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Fig. 4. Estimates of leaf number (+SE) as a function of treatment
and time. See Fig. 1 caption for treatment acronyms.
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results confirm that L. papilliferum is primarily an outcross-
ing species. Moreover, our results, combined with those of
earlier studies, demonstrate that both small and large
L. papilliferum populations share similar spatial structure.

Although the dispersal capacity of pollen and seed has not
been measured directly for L. papilliferum, our finding that
populations are spatially structured within individual slick
spots suggests that both pollen and seed dispersal are low
for this species. Consistent with this hypothesis,
L. papilliferum fruit and seed lack obvious mechanisms for
long-distance dispersal (Moseley 1994), and observations of
insect movement on L. papilliferum flowers reveal that
pollinators often linger on individual plants or within
clusters of plants within slick spots (I.C. Robertson, personal
observation). Indeed, leptokurtic patterns of pollen move-
ment are typical for insect pollinated plants (Levin and
Kerster 1974; Godt and Hamrick 1993).

A population genetics study by Stillman (2006), which in-
cluded all but one of the L. papilliferum populations used in
our study, revealed that small populations have significantly
less genetic diversity than large populations. This result is
consistent with the expectation that small populations expe-
rience high levels of inbreeding and reduced genetic varia-
bility because of little or no outcrossing with other
populations (Ellstrand and Elam 1993). If true for
L. papilliferum, one might expect less spatial structure in
small populations than in large populations. However, per-
cent fruit set as a function of outcrossing distance did not
differ significantly between the 10 small populations and
one large population we examined; both categories of popu-
lation showed clear evidence of spatial structure. Neverthe-
less, our findings and those of Stillman (2006) are not
necessarily contradictory because it is unlikely that the
genes represented in Stillman’s allozyme analysis are the
same ones that affect fruit set. Although small populations
of L. papilliferum have less genetic variability than large
populations, the consequences of lower genetic variability
may not be currently reflected in percent fruit set.

One of the goals of our study was to assess whether
L. papilliferum exhibits inbreeding depression. Ideally, for
such an assessment, one would include measurements of off-
spring reproductive success (Waser 1993; Dudash and
Fenster 2001). However, few studies of inbreeding depres-
sion manage to achieve this goal, and instead rely on surro-
gate measures of fitness. In our analyses, we considered
seed mass, germination rate, and several growth metrics of
offspring. Heavier seeds had increased germination success
and resulted in larger offspring with longer leaves than off-
spring originating from lighter seeds. Because photo-
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synthetic capacity often affects fruit set (Niesenbaum 1993;
Longer and Oosterhuis 1999; Stewart and Graves 2006),
plants with larger and more numerous leaves may produce
more offspring than smaller plants with fewer leaves. In-
deed, larger L. papilliferum produce more fruit and seed
than smaller individuals (Meyer et al. 2005). Thus, enhanced
germination and growth resulting from longer outcrossing
distances likely have important consequences for individual
fitness.

Evidence for inbreeding depression in L. papillferum
varied with life stage and growth parameters in developing
offspring. Low percent fruit set in the self-pollinated and
nearest-neighbor crosses may indicate the occurrence of
inbreeding depression, or it may reflect partial self incom-
patibility that prevents fertilization between closely related
individuals. However, increases in offspring leaf length as a
function of outcrossing distance suggest inbreeding depres-
sion, as does the pattern between outcrossing distance and
offspring leaf number, although in the latter case the result
was not statistically significant (P = 0.07). Neither seed
mass nor mean percent seed germination differed signifi-
cantly as a function of outcrossing distance. However, given
the similarity in pattern between percent fruit set and per-
cent germination with respect to outcrossing distance
(Figs. 2 and 3, respectively), further investigation is needed
to clarify whether inbreeding depression is expressed in ger-
mination rates.

Variability in expression of inbreeding depression among
characteristics of offspring is not uncommon (Husband and
Schemske 1996; Byers 1998; Dudash and Fenster 2001;
Galloway et al. 2003). Galloway et al. (2003) found that
although inbreeding depression in Campanula
americana L. was not expressed in seed set or percent ger-
mination, it was expressed in offspring growth and flower-
ing characteristics. Similarly, Silene virginica L. does not
exhibit inbreeding depression for percent fruit set or percent
seed set, but it does express inbreeding depression for traits
that occur later in the life cycle such as leaf number, bio-
mass, and flower production (Dudash and Fenster 2001).
Thus, variation in response to inbreeding among individual
characteristics highlights the importance of measuring as
much of an individual’s life cycle as possible when attempt-
ing to establish the occurrence of inbreeding depression
(Byers 1998). Future studies on L. papilliferum would there-
fore benefit from consideration of how outcrossing distance
effects the capacity of offspring to mature, flower, and pro-
duce viable fruit. This information, coupled with our knowl-
edge of how inbreeding affects early growth and
development in L. papilliferum, will provide a more com-
plete picture of how population structure influences popula-
tion processes in this rare species.
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