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Abstract 

The connectivity of so-called “special” and “general” grain boundaries at a quadruple node is known to be 

nonrandom as a result of crystallographic constraints.  Although a quadruple node is a three-dimensional feature, 

there exist two-dimensional features which are topologically identical.  Therefore, the distribution of these two-

dimensional features may be used to determine the three-dimensional connectivity.  Computer simulations of a 

three-dimensional microstructure which is virtually serial sectioned are used to validate the proposed approach. 
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1. Introduction 

 

     Grain boundaries are known to play an important role 

for many properties [1].  Although the rigorous definition 

of grain boundary structure has five macroscopic degrees 

of freedom [1], it is common to apply a binary 

classification on the basis of the boundary structure [2, 3].  

The “special” boundaries are those that are resistant to 

damage (e.g., cracking), while “general” boundaries are 

susceptible to damage [4, 5].  It has recently been proposed 

that the properties of a material depend not only on the 

fraction of special boundaries, but also on the connectivity 

of these damage-resistant boundaries [6-8].  One 

quantitative approach used to study grain boundary 

connectivity is the triple junction distribution (TJD) [9-11], 

which gives Ji, the fraction of junctions coordinated by i (= 

0, 1, 2 or 3) special boundaries.  If the special and general 

boundaries have a random spatial distribution, the TJD is 

found using a probabilistic argument as: 
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where p is the global fraction of special boundaries, and the 

combinations 
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 are equal to 1, 3, 3, and 1 for i = 0, 1, 2 

and 3, respectively.  The TJD can be determined easily 

from a two-dimensional (2-D) section of a microstructure; 

however, when compared to the prediction of Eq. (1), the 

TJDs in real materials are found to be highly nonrandom 

[9, 10, 12].  While J1 junctions are more abundant than 

predicted, J2 junctions are scarcer.  The deviation from Eq. 

(1) is due to the requirement for crystallographic 

consistency around any closed path in the microstructure 

[9, 10].  If a circuit is drawn which crosses a number of 

grain boundaries and which ends in the same grain where it 

began, the changes in misorientation must sum to zero (i.e., 

misorientation is conserved).  The smallest such path 

encircles a triple junction and is referred to as a first-order 

constraint [13].  

     The connectivity of grain boundaries in three-

dimensional (3-D) microstructures is of more practical 

interest as materials are inherently three-dimensional.  In 3-

D, the local special boundary coordination can be studied at 

quadruple nodes, the points where four grains, six grain 

boundaries and four triple junctions meet.  Figure 1a shows 

an illustration of a quadruple node where the grains are 

modeled as tetrakaidecahedra and labeled G0, G1, G2 and 

G3. Similar to triple junctions, quadruple nodes can be 

classified on the basis of their special boundary 

coordination and a quadruple node distribution (QND) 

defined as the population of quadruple nodes of a given 

type [14].  The quadruple node populations are labeled Qi+j, 

where i (= 0 to 6) is the number of special boundaries in the 

quadruple node and j (= 0 to 4) the number of triple 

junctions with two or more special boundaries.  The QND 

can also be predicted for the unphysical case where 

boundaries are randomly assigned as either special or 

general as:  

( ) i6i
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where Φi+j is the number of possible configurations for 

each node type and is equal to 1, 6, 3, 12, 4, 12, 4, 12, 3, 6 

and 1 for i + j = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10, 

respectively.   

     Computer simulations have shown that not only is the 

QND nonrandom, but it cannot be predicted solely on the 

basis of the first-order (i.e., triple junction) constraints 

alone [14].  As quadruple nodes are comprised of four 

triple junctions, four first-order circuits exist.  In addition, 

there are second-order constraints present, represented by 

circuits that begin and end in the same grain and that cross 

four of the six grain boundaries, which impose a higher 

degree of constraint on the special boundary coordination.  

Accordingly, the local correlations in 3-D microstructures 

cannot be predicted from the easily-acquired TJD alone.  
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As the connectivity and local correlations in grain 

boundary networks are becoming the focus of more work, 

it is important to be able to determine the QND in a 

straightforward manner.  To the best of our knowledge, no 

experimental studies of the QND exist, although methods 

such as serial sectioning could be used.  Unfortunately, 

serial sectioning and related techniques are time-consuming 

and do not permit rapid evaluation of the 3-D connectivity 

of a microstructure.   

     Although a quadruple node cannot be observed on a 

single 2-D microstructural section, the connectivity of 

boundaries at a quadruple node can be mapped onto a plane 

[14], such that particular features in 2-D sections may be 

topologically identical to a quadruple node, allowing for 

easy determination of the QND.  We propose here a 

method by which the QND can be obtained by studying the 

statistical distribution of such 2-D features and compare the 

results to the QND determined for a 3-D microstructure. 

 

2. Geometrical approach 

 

     To determine what 2-D feature may inform the 3-D 

connectivity, it is useful to consider how the features of a 

quadruple node might appear in a 2-D section.  For 

example, if the grains in Figure 1a are sectioned above the 

quadruple node, the 2-D section shows all four grains and 

six grain boundaries in the quadruple node (Fig. 1b).  Here, 

grain G0 appears as a three-sided grain whose neighboring 

grains are G1, G2 and G3. Not only does the 2-D section in 

Figure 1b reveal all of the features of the quadruple node, 

but the connectivity among grain boundaries is preserved. 

In other words, the same first- and second-order circuits 

that could be drawn through three or four grains in the 

quadruple node can also be drawn on the 2-D section as 

illustrated in Figure 2.  In both cases, there are four unique 

first-order circuits that each passes through three grains and 

three grain boundaries.  Labeling the circuits by the grain 

boundaries which they cross, the first-order circuits are a-b-

c, a-d-f, b-d-e, and c-e-f (Fig. 2a); the three second-order 

circuits are: c-e-d-a, b-d-f-c, and a-f-e-b (Fig. 2b).  As the 

connectivity of the grain boundaries at a three-sided grain 

is identical to that of a quadruple node, the coordination of 

special boundaries around three-sided grains can be 

quantified by Ti+j, the distribution of three-sided grain 

configurations which account for the special boundary 

populations, in direct analogy to the QND.  These two 

distributions, Ti+j and Qi+j, should then be identical as they 

measure the special boundary coordination of topologically 

indistinguishable features.  It should be emphasized that we 

do not suggest that all three-sided grains are associated 

with quadruple nodes, only that identical higher-order 

circuits which exist around a quadruple node are also 

present around three-sided grains, thus yielding the same 

Figure 2: Schematic illustration of (a) first-order and (b) 

second-order constraints present at a quadruple node (left 

column) and three-sided grain (right column).  The grain 

boundaries are labeled a through f.  The circuits which 

comprise each constraint are indicated by the arrows; first-

order circuits pass through three grains and three grain 

boundaries, while second-order circuits pass through four 

grains and four grain boundaries. 

Figure 1: (a) The four grains, labeled Gi, which meet at a 

quadruple node.  (b) If the grains are sectioned just above the 

quadruple node, grain G0 appears as a three sided grain 

embedded in the other three grains.  The six boundaries that 

comprise the QN, labeled a through f, are also present 

around the three-sided grain. 
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information about the connectivity and allowing the QND, 

a property of a 3-D microstructure, to be obtained from a 2-

D section.   

 

3. Simulation procedure 

 

     To validate the approach of classifying three-sided 

grains to obtain information on the 3-D connectivity of the 

microstructure, we simulated 3-D, equiaxed 

microstructures from which the quadruple node and three-

sided grain distributions could be obtained over all values 

of the special boundary fraction.  The simulated 

microstructures used a 3-D array of volume elements in a 

close-packed, face-centered cubic configuration with L = 

200 volume elements per side (8 million in total).  Periodic 

boundary conditions were applied so that there were no 

edge effects.  An equiaxed grain structure was created by 

randomly selecting Ω = 1600 volume elements as the grain 

seeds with arbitrary orientations labeled 0 to Ω-1.  Each of 

the L
3
 volume elements was then assigned the same 

orientation as the seed to which it was closest.  Figure 3a 

shows a small structure simulated with this routine.   

     A total of 100 different simulated microstructures were 

constructed; for each, the distribution of grain boundary 

types was changed by reassigning the crystallographic 

orientation of each grain to affect a different special 

boundary fraction.  Two distinct crystallographic textures 

were used, one which varied from an ideally random 

texture to a single crystal texture and another which varied 

from an ideal fiber texture to a single crystal texture; the 

methods for assigning grain orientations are described 

elsewhere [9].  In the following discussion, these 

microstructures will be referred to as general textured and 

fiber textured, respectively.   

     Once the grain orientations were assigned, grain 

boundary misorientations were calculated and boundaries 

with misorientations less than a threshold value were 

classified as special; all other boundaries were labeled 

general.  The quadruple node distribution was obtained by 

scanning the microstructure for points where four grains 

and six grain boundaries met.  The quadruple node 

character was determined from the number of special 

boundaries that met at the node and the number of triple 

junctions with at least two special boundaries.  In order to 

determine the three-sided grain distribution from a two-

dimensional section (Fig. 3b), virtual serial sectioning was 

performed on each microstructure and data sets were 

extracted from the 3-D structure consisting of a single 

plane of volume elements.  Two hundred planes were 

extracted normal to each of the three principal directions.  

Three-sided grains were identified (e.g., the circled grain in 

Fig. 3b) and the character of the three-sided grain 

configuration determined from the number of special 

boundaries present and the number of triple junctions with 

at least two special boundaries.   

 

4. Results and discussion 

 

     During the simulations, the values Qi+j and Ti+j were 

determined over all values of p for each of the 100 

simulated microstructures.  For each microstructural 

realization, the values of Qi+j and Ti+j can be plotted as a 

function of the special boundary fraction.  Figure 4 shows 

one such plot for the population of nodes with i + j = 1.  

For both fiber textured and general textured micro-

structures, Q1 (triangles) and T1 (circles) show good 

agreement.  The dashed line in Figure 4 represents the 

prediction of Eq. (2) when boundaries are randomly 

assigned as special or general.  However, it is clear that Q1 

and T1 for the crystallographically-consistent 

microstructures do not match the prediction of Eq. (2).  

Figure 4 also shows the value of Q1 from our previous 

simulations where the boundaries were modeled as the 

faces of polyhedra [14].  While the simulation methods 

differ, both Q1 and T1 match the previous simulations.  

Figure 3: (a) Representative 3-D microstructural model with 

an equiaxed grain structure.  (b) Virtual serial section 

through a similar microstructural model in which a three-

sided grain has been identified. 
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Although not included here, the distributions for the other 

node types Qi+j and Ti+j for this and other microstructural 

realizations match equally well to one another and to prior 

simulations.  The consistency among Qi+j and Ti+j suggests 

that the quadruple node distribution can be found by 

analyzing the statistical distribution of three-sided grains in 

a two-dimensional microstructural section.  In order to 

achieve the accuracy observed here, approximately 2500 

three-sided grains must be analyzed.  The present 

simulations and concurrent experimental work suggest that 

~9% of grains in a 2-D section appear three-sided; there-

fore, for a fine-grained specimen, an accurate QND could 

be found by analyzing a few square millimeters. 

     Although Figure 4 suggests that Ti+j is equivalent to Qi+j, 

differences between the two exist.  In order to evaluate how 

good an approximation Ti+j is for Qi+j, the difference, ∆i+j, 

between the two for each value of i + j was analyzed for 

each of the 100 microstructural realizations.  The 

difference is defined as:  

jijiji TQ +++ −=∆      (3) 

and was determined for every value of the special boundary 

fraction.  After finding all values of ∆ for all realizations 

(approximately 10,000 values), a cumulative distribution 

was plotted for ∆.  This process was repeated for each i + j 

from 0 to 10 and for fiber textured and general textured 

microstructures.  From the cumulative distributions, the 

magnitude of ∆ below which 90%, 98% and 100% of 

differences fell could be determined.  As Figure 5 

indicates, 90% of the differences for a given i + j were 

often substantially below 0.01 and, in most cases, 98% of 

the errors were below 0.015.  While the maximum values 

of ∆ are ~0.03, the number of points with such differences 

was exceedingly small.  Furthermore, it is useful to note 

that the differences observed here are smaller than the 

statistical errors would be in determining such distributions 

from real microstructures.  Therefore, we find that Qi+j may 

be reliably predicted from Ti+j.   

     Finally, it is important to mention that the differences 

calculated here are between the measured values of Qi+j and 

Ti+j.  In other words, the values are being compared to one 

another, rather than comparing the deviations of both to a 

known baseline (e.g., an analytical value for Qi+j).  

Although the latter may be more appropriate, an analytical 

expression is not available for fiber textured or general 

textured microstructures.   

 

5. Conclusions 

  

     We have studied the connectivity of grain boundaries in 

three dimensions using two-dimensional microstructures.  

The main conclusions are:  

1. Three-sided grains and quadruple nodes are 

topologically identical.  In other words, the same first- 

and second-order crystallographic constraints exist at 

both three-sided grains and quadruple nodes.   

2. The connectivity of special boundaries at a quadruple 

node, quantified through the QND, can be obtained by 

evaluating the distribution of three-sided grain types in 

a 2-D microstructure.   

3. Although small differences occurred between the 

Figure 4: Quadruple node (  ) and three-sided grain (  ) 

distributions as a function of special boundary fraction.  The 

dashed line is for a randomly-assembled microstructure as 

given by Eq. (2).  The solid black lines correspond to the 

quadruple node distribution found previously [14] and serves 

as a basis for comparison. 

 

Figure 5: Magnitude of differences, ∆, between the 

quadruple node distribution (Qi+j) from the 3-D 

microstructure and the three-sided grain distribution 

(Ti+j) from 2-D sections through the microstructure.  

The grains were assigned with (a) fiber texture or (b) 

general texture.  In general, 90% of differences are 

smaller than 0.01. 
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distributions Qi+j and Ti+j, the differences were almost 

always less than 0.01, an accuracy which exceeds what 

could be achieved experimentally.   

4. The analysis technique described here has been 

validated with computer simulations of 3-D 

microstructures and virtual serial sectioning, and could 

be readily applied to experimental data sets.  This 

work is underway to predict quadruple node 

distributions for real materials.   
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