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CUDA Implementation of a Navier-Stokes Solver on Mlii-
GPU Desktop Platforms for Incompressible Flows

Julien C. Thibauftand Inanc Senocak
Boise State University, Boise, Idaho, 83725

Graphics processor units (GPU) that are traditionaly designed for graphics rendering
have emerged as massively-parallel "co-processorgd the central processing unit (CPU).
Small-footprint desktop supercomputers with hundreds of cores that can deliver teraflops
peak performance at the price of conventional workstions have been realized. A
computational fluid dynamics (CFD) simulation capalility with rapid computational turn-
around time has the potential to transform enginedng analysis and design optimization
procedures. We describe the implementation of a N&r-Stokes solver for incompressible
fluid flow using desktop platforms equipped with muti-GPUs. Specifically, NVIDIA’s
Compute Unified Device Architecture (CUDA)programming model is used to implement the
discretized form of the governing equations. The mjection algorithm to solve the
incompressible fluid flow equations is divided intodistinct CUDA kernels, and a unique
implementation that exploits the memory hierarchy é the CUDA programming model is
suggested. Using a quad-GPU platform, we observe aworders of magnitude speedup
relative to a serial CPU implementation. Our resuls demonstrate that multi-GPU desktops
can serve as a cost-effective small-footprint pari@l computing platform to accelerate CFD
simulations substantially.

[. Introduction

| n the last decade, CPU designers have focused @iogéng multi-core architectures instead of insieg the
clock frequency by putting more transistors on tie because of power constrat&PU designers have

adopted the many-core strategy early on, sincehigapendering is a parallel task. GPUs are bagetie@stream
processing architecturehat is suitable for compute-intensive parallakéd Modern GPUs can provide memory
bandwidth and floating-point performances that

are orders of magnitude faster than a stand - p——
CPU. Figure 1 depicts the growing gap in pei p—

performance, measured in floating poir —e—intet CPU sy @92
operations per second (FLOPS) between Gl = a0 U

and CPU over the last five years. Currentl
NVIDIA GPUs outperform Intel CPUs on
floating point performance (Fig. 1) and memoi
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bandwidth, both by a factor of roughly fen 2 ayes  NV4O oo o 3208
Until recently, using the GPUs for genera NVa0 Core2 Duo 2
purpose computation was a complicated exerci o .—Q—Q———Q——O———‘/.
A good knowledge of graphics programming w Jdan Jun  Apr Jun  Mar Nov May Jun
required, because GPU's old fixed-functio 2003 3004 2005 3006 2007 2008
pipeline dld nOt a”OW Complex Operatiéngpus_ GT200 = GeForce GTX 280 G71 = GeForoe 7500 GTX V35 = GeForce FX 5950 Uttra
have evolved into a programmable engin 92 = GeForce 9800 GTX G70 = GeForce 7800 GTX NV30 = GeForce FX 5800
supported by new programming models trying G = CeForos D0 GTX  NVAD = GeForce 6300 Utra

find the right balance between low access to t...
hardware and high-level programmabiflitBrook

programming model, released in 2004 dggure 1. Evolution of floating-point performance for Intel

PUs and NVIDIA GPUs (courtesy of NVIDIA).
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Stanford University, offered one of the first deymhent platforms for general purpose GPU (GPGPU)
programming®. Brook provides a GPU abstraction layer that ezmlata parallelism. It keeps the programmer
away from having an extensive knowledge of graphposgramming - like OpenGL - while being platform
independent. NVIDIA recently released a more adednarogramming model for its own line of GPUs: Caep
Unified Device Architecture (CUDA) With CUDA, NVIDIA offers a common architecture carpprogramming
model for its own line of GPUs. The C-based appilicaprogramming interface (API) of CUDA enablesada
parallelism through the use of shared memory, kg eomputation parallelism thanks to the introductof the
thread and grid concepts. The CUDA programming rhbde found success in the GPGPU community. There i
also a recent effort called MCUD Ao program multi-core CPU architectures. Advanbticro Devices (AMD), on
the other hand, offers Brook+, a modified versidntlte Brook open source compiler. Additionally, AN&D
Compute Abstraction Layer (CAL) is used as a ciatform interface to the GPU. Both AMD CAL and Bka-
are available in AMD’s software development kit (S

Advances in many-core architectures have beenetmdous, but using the full potential of many-core
architectures is not an easy task. Engineers apdtsts may need to rewrite and optimize theia®gsequential
codes to harness the compute-power of modern ddg-ecove CPUs, and many-core GPUs. Message Passing
Interface (MPI) programmirighas been widely adopted in parallel scientific patations. MPI can be adopted for
parallel computations both on shared and distributeemory systems, but it has better scaling pragseffor
distributed memory systems by deSighlP| provides a high level API that allows prograers to transparently
make use of multiple processors on both sharediatidbuted systems. The programmer does not ladeal with
the details of the communication protocol betwees nodes. On shared memory systems, Posix mu#idhrg
offers low level functions to implement multi-thokd systems, while OpenMP provides a certain atigiralayer,
which makes it more accessible to software devetopk contrast, CUDA offers a different approadtatt
specifically targets the many-cores on a single GIPi$ the programmer’s responsibility to optimithe usage of
the memory and the threads available on the strepmore¥’. Implementation for multiple GPUs is explicitly
performed by programmers, and multi-GPU parallelismot currently addressed by CUDA.

Prior to the introduction of the CUDA and Brook gramming models, several Navier-Stokes solvers baea
implemented for the GPU. HarHsmplemented a 3D solver to create a physicallyebadoud simulation using the
Cg programming language from NVIDIA. It is a higiwel programming language for graphics on GPUsgchwhi
operates as a layer above OpenGL. His implementatias based on the “stable fluids” method propdsgd
Stant?. This method is adapted to graphics applicatiorabse of the real-time visualization constraintRif. 13
the Navier-Stokes equations are solved for flonuatbcomplex geometries following the work of Hartiue to
its relative potential for easy parallelizatione thattice-Boltzman method (LBM) has also been impated in
different studies addressing complex geometriefRéh 14, GPU implementation of LBM resulted in egep of
15x relative to the CPU implementation. In Ref. 46,LBM was implemented on a GPU cluster to cateueinds
and contaminant dispersion in urban areas. A sgeedu.6x relative to a CPU cluster was achievedhigir
study”®, which demonstrates that GPU clusters can seraa afficient platform for scientific computing.

High performance parallel computing with CUDA hai®eady attracted various scientists in severaliplises,
such as molecular dynamt&s®, computational biology, linear algebr®?’ weather forecastiig and artificial
intelligencé®. In the computational fluid dynamics (CFD) fieliplke and Krafczy¥* implemented a 3D Lattice-
Boltzman method for flow through a generic porowesiiom. They obtained a gain of up to two ordersagnitude
with respect to the computational of an Intel X&o#GHz. Brandvik and Pulldhmapped 2D and 3D Euler solvers
to the GPU using BrookGPU and CUDA programming ni&deor the CUDA version of the 3D Euler solverith
computations on NVIDIA 8800GTX showed a speedup 16 over the CPU, whereas the BrookGPU
implementation of the 3D Euler solver showed a nsbdpeedup of only 3x on the ATl 1950XT. Molemageal?®
developed a multi-grid method to solve the presfaisson equation. The CUDA implementation of thétirgrid
pressure Poisson solver produced a speedup ofeéf&tive to a 2.2MHz AMD Opteron procesor

The recent literature attests to the compute-pialenof GPU computing with new programming models.
Numerous studies have adopted the CUDA programnmaglel to numerical problems that have practical
applications in engineering and science at frda this study, we present the implementation 8t& Cartesian-
grid CFD code on multi-GPU/multi-CPU desktop platis for incompressible fluid flow simulations. Sieally,
we adopt the NVIDIA CUDA programming model to impient the discretized form of the Navier-Stokes
equations on desktop platforms with multiple GP@ommunication among GPUs is enabled with POSIX
threading. We validate our multi-GPU parallel CFDde against the well established lid-driven cavlow
problenf®. Several performance tests that assess the coiiopalaspeedup of multi-GPU platforms relative to a
serial CPU code are presented. To the best ofkaowledge, our work is the first implementation a
incompressible flow Navier-Stokes solver on mulidGdesktop platforms.
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Il.  Governing Equations and Numerical Approach
A. Governing Equations of Incompressible Fluid Flows

The Navier-Stokes equations for incompressiblalfflaws can be written as follows
Ofu=0, (1)

a—U'+qu|:—1DP+|/DZu, )
ot P

whereu is the velocity vecto? is the pressure, is the density andis the kinematic viscosity.
B. Numerical Approach

Second-order accurate central difference scherusad to discretize the advection and diffusion teohthe
Navier-Stokes equations on a uniform staggeredgriirst-order accurate, explicit Euler scheme isdufor the
time derivative term. The projection algoritfthis then adopted to find a numerical solution te Mavier-Stokes
equation for incompressible fluid flows. In the jeation algorithm, the velocity fieldi* is predicted using the
momentum equations without the pressure gradiemt & follow$® *

u =u' +At(-u'Om' + v, ®3)

where the index andAt represents the time level and time step sizeertisely.

The predicted velocity field* does not satisfy the divergence free conditiooamse the pressure gradient term
is not included in Eq. (3). By enforcing the divenge free condition on the velocity field at time1(), the
following pressure Poisson equation can be deffired the momentum equations given in Eqg. (2)

PP =L o @
At

In the present study, the above equation is sobgdag a Jacobi iterative solver to time march theations to a
steady-state solution. For time-accurate simulatian more efficient solver (e.g., geometric muitdgmethod)
should be adopted for time-accurate unsteady stronka The pressure field at time (t+1) is thendusecorrect the
predicted velocity fieldi* as follows

ut+l =u * _E DPt+l

P : (5)

lll.  Programming Model for GPU Computing

CUDA is a new programming model developed by NVIDtAharness the computational power of their GPUs.
CUDA is an extension to the C programming languagd it enables the developers to launch and manage
massively parallel computations on the GPU. Theleeas referred to the CUDA programming guide fooren
detail$. In this section we summarize the GPU hardware #ral programming model. Hereinafter, we
interchangeably use the term “host” to refer to@RJ and the term “device” to refer to the GPU.

A. Hardware Architecture

GPUs are originally developed for graphics rendgthmat requires parallel computation with intengghmetic
operations. A GPU is a set of single instructiomtiple data (SIMD) multiprocessors. In GPU designansistors

3
American Institute of Aeronautics and Astronautics



are devoted to data processing rather than datainca@nd flow contrdl In the CUDA programming model,
compute-intensive tasks of an application are geduipto an instruction set and passed on to the &Rlb that
each thread core works on different data but eesctite same instructidriThe memory hierarchy of CUDA is
similar to the memory hierarchy of a conventionailtiprocessor. Closer to the core, the local regsstllow fast
ALU operations (L1 cache). The shared memory, $seall the cores of a single multiprocessor, carcdmpared
to a second-level cache (L2), as it provides a mgroloser to the processors that will be useddeestlata that tend
to be used over time by any cré&fhe difference in CUDA is that the programmerrésponsible for the
management of the shared memory or the “GPU cadie'last level in this hierarchy is the global noeyn It can
be accessed by any processor of the GPU, but figyreer latency cost. Threads can actually perfamublaneous
scatter or simultaneous gather operations if tramiresses are aligned in menfoi@oalesced memory access is
crucial for superior kernel performance as it hithes latency of the global memory. The challengeaddCUDA
software developer is then, not only the paralgion of the code, but also the optimization of tiemory accesses
by making the best use of the shared memory andahlesced access to the global device memory .

Host. I Device

Device
Multiprocessor N Grid 1
. i | {
= Kernelt —p  slock Block Block
| . L | (0, 0) (1,0 n
Multiprocessor 2
Multiprocessor 1 & Biodk '.,'-:""_ Bk ;L_ Block
(0, 1) w1y | 2 ‘
il | [t
£ i
‘,-' Grid 2 / '1 '.I |
Instruction i"‘ 7= 17 '1’ o
Unit Kernel 2 —pp | I'%
Processor 1 I Processor2 | ** | i 3 b
e . Bt
= s e .
1 g ] I3

L}
Black (1, 1) 1

a) b)

Figure 2. a) CUDA SIMD multiprocessor architecture (courtesy of NVIDIA). b) CUDA thread organization
(courtesy of NVIDIA). In this example, the grid iscomposed of 3x2 blocks, each containing 5x3 threads

Each multiprocessor also has read-only constattecand texture cache. The constant cache can bebygbe
threads of a multiprocessor when trying to readstimae constant value at the same time. Textureeaatlhe other
hand is optimized for 2D spatial locality and slibbe preferred over global device memory when cualé read
cannot be achievéd

B. Programming model

The computation core of the CUDA programming moidethe kernel, which is passed on to the GPU and
executed by all the processor units, using diffedata streams. Figure 2b presents the layouteofhiteads in the
CUDA programming model. Each kernel is launchednftbe host side (CPU), and it is mapped to a thgeabon
the GPU. Each grid is composed of thread blockkth® threads from a particular block have acceshe same
shared memory and can synchronize together. Oothier hand, threads from different blocks cannoichyonize
and can exchange data only through the global dewiemory. A single block can only contain a limited numbér
threads, depending on the device model. But diffeléocks can be executed in parallel. Blocks etirguthe same
kernel are batched together into a grid. The prognar needs to define the number of threads peklzind the grid
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size (number of blocks) before launching the kermbk parallel execution of the blocks is then hedidy CUDA
in a batch mode

As mentioned earlier, CUDA API is an extension e {C programming language. It provides functiams t
manage the computations on the GPU. The full fidunctions is discussed in detail in the CUDA marmming
guide’. Major functions that we have benefited in ourdgtarecudaMalloc() andcudaMemcpy() functions.
These functions allocate memory on the GPU and dapg from the CPU memory into the device memorthef
GPU, respectivelycudaFree()  function is used to free memory on the device. kKbenel is launched by
specifying the size of the grid (number of blocheyl the size of the blocks (number of threads)gutie following
prototype:kernel_name<<grid size, block size>>() . __synchthreads() can be used inside a
kernel to synchronize all the threads of a samelbl@lobal synchronization is not addressed byGb¥®A model.
The only way to force a global synchronizationd®xkit the kernel before launching a new one.

In addition, the CUDA API introduces the qualifiershared_, _device_ and _constant_ to define the
type of memory a variable should use. The functioalifiers _device_ , _global_ , and _host_  specify
whether the GPU or the CPU should execute andtefjualified functioh

IV. Multi-GPU Implementation of a 3D Incompressible Naver-Stokes Solver

A. Single GPU Implementation

Let NX, NY and NZ be the number of computationatles in the x, y and z directions for a flow domain,
respectively. The 3D domain of size NXx NYxNZ ipresented by a 2D matrix of width NX and height NN
on the host side, as shown in Fig. 3. On the GRIg, she same representation is used to store dagéobal
memory. This 2D mapping translates to efficienadaansfer between the host (CPU) and the devi€dJ{GNote
that several matrices are needed to representéissype and velocity components at different tievels. Memory
allocation on the device is done only once beftaigtiag the time stepping.

NX

z=NZ-1

Figure 3. Mapping of a 3D computational domain to &D matrix. The mapping is used on both the CPU and

the GPU sides. Cells in white on the 2D matrix remsent the ghost (halo) cells to apply the boundary
conditions.

Listing 1 shows the host side code for the time stepping.cbae snippet is composed of two nested loops. The
outer loop is used to advance the solution in tiamel the inner loop is used for the iterationshef dacobi solver to
numerically solve the pressure Poisson equation §Edn our implementation, the velocity fieldtahe t depends
only on the velocity field at-1. Six different matrices are used to represenvéiecity fields at the time (u, v,

w) andt-1 (uold, vold, wold ). The matrices are swapped at the end of eachdiegefor reuse as shown in
Listing 1. In a similar way, the Jacobi solver riggs two matricep andpold , which are swapped after each
iteration of the Jacobi solver. As shown in Listth¢the GPU code is composed of six different kert@implement
the major steps of the projection algoriffinBeparate kernels are needed to achieve globahsymization across
the CUDA blocks before proceeding to the next tstep for the computations.
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//for each time step
for (t=0; t < ntstep; t++)
{
/lcall kernel to conpute momentum (ut, vt, w)
momentum << grid, block >> (u, v, w, uold, vold, wo Id)
/lcall kernel to conpute boundary conditions
momentum_hbc << grid, block >> (u, v, w)
/lcall kernel to conpute the divergence (div)
divergence << grid, block >> (u, v, w, div)
//for each Jacobi solver iteration
for (j=0; j < njacobi; j++)
/lcall kernel to conpute pressure
pressure << grid, block >> (u, v, w, p, pold, div)
//rotate natrices
ptemp = pold; pold=p; p=ptemp;
/lcall kernel to conpute boundary conditions
pressure_bc << grid, block >> (p)
/lcall kernel to correct velocity (ut, vt, w)
correction << grid, block >> (u, v, w, p)
/lcall kernel to conpute boundary conditions
momentum_bc << grid, block >> (u, v, w)
//rotate matrices
utemp = uold; uold=u; u=utemp;
vtemp = vold; vold=v; v=vtemp;
wtemp = wold; wold=w; w=wtemp;
}

Listing 1. Partial host-side code that implementshe projection algorithm® to solve the Navier-Stokes
equations for incompressible fluid flow. The outedoop is used for time stepping while the inner loojs in
the iterative solution of the pressure Poisson eqtian.

NX
<>
I
NY (D filled with data from GPU 1
PR
B
GPU 2 I updated by GPU 2
""""""""""" from z=(NZ/4)x2 to
— (
GPU 2 .c \ z=(NZ/4)x3
""""""""" r I : _
GPU 1 e z 1
""""""""" i filled with data from GPU 3
GPUC
X —
(@ y (b)

Figure 4. a) Subdomain assignment for multi-GPU sation. b) Representation of the GPU global memory.
Each GPU needs ghost cells to represent the top abdttom neighboring cells which are updated by othe
GPUs (represented here in red).
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A. Multi-GPU Implementation

//for each time step
for (t=0; t < steps; t++)

{
/Il copy velocity ghost cells fromhost to GPU (top and botton)

/lcall kernel to conpute nonmentum

momentum <<< grid, block >>>(u, v, w, uold, vold, wold, gpuCount, *device);
/1 apply boundary conditions
momentum_hc <<< grid, block >>>(u, v, w, gpuCount, *device);

[/ copy velocity border cells fromGPU to host menory(top and bottom

/1synchroni ze with other threads before readi ng updated ghost cells
pthread_barrier_wait(&barrier);

/1 copy velocity ghost cells fromhost to GPU(top and botton
[/lcall kernel to conpute divergence
divergence <<< grid, block >>>(u, v, w, div, gpuCo unt, *device);

//for each Jacobi solver iteration
for(m = 0; m< njacobi; m++)

{
/1 conpute pressure
pressure <<< grid, block >>>(div, pold, p, gpuCou nt, *device);
ptemp = pold; pold=p; p=ptemp;
pressure_bc <<< gridDims, blockDims >>>(d_p, s_gpuCount, *device);

[/ copy pressure border cells fromGPU to host nmenory (top and bottom

/1synchroni ze with other threads before readi ng updated ghost cells
pthread_barrier_wait(&barrier);

[/ copy pressure ghost cells fromhost to GPU (top and botton)

//velocity correction
correction <<< grid, block >>>(u, v, w, p, gpuCoun t, *device);
momentum_bc <<< grid, block>>>(u, v, w, gpuCount, *device);

[/ copy velocity border cells fromGPU to host menory(top and bottom

/1synchroni ze with other threads before readi ng updated ghost cells
pthread_barrier_wait(&barrier);

//rotate matrices
utemp = uold; uold=u; u=utemp;
vtemp = vold; vold=v; v=vtemp;
wtemp = wold; wold=w; w=wtemp;

}

Listing 2. Partial host-side code that implements e projection algorithm™® to solve the Navier-Stokes
equations for incompressible fluid flow. The outedoop is used for time stepping while the inner loojis in the
iterative solution of the pressure Poisson equation A CPU thread is created for each available GPUral
executes the code above. Synchronization betweert8PU threads is done through a Posisarrier.

7
American Institute of Aeronautics and Astronautics



In the multi-GPU implementation, each GPU is resilae for a subdomain of size NXxXNYx(NZ/number of
GPUs), as shown in Fig. 4a. The whole domain psesented on the host side while the GPUs onlye dtogir
respective subdomains in global memory, and thetgtalls used to update the cells at the bottontlaadop of the
subdomain. As shown in Fig. 4b, 2xNXxNY ghost cekksed to be filled with data from the GPUs respulasior
the top and bottom neighboring subdomains. At tRJGevel, the subdomain is mapped to a 2D CUDA gl
same way it was for the single-GPU implementation.

With the domain decomposition shown in Fig. 4a;he@PU needs neighboring data computed by othersGPU
which means all GPUs need to synchronize to exahaetpcity and pressure fields at each time step.aBGPU
cannot directly exchange data with another GPU.cHgemhost cells at the multi-GPU domain decompmsiti
boundaries needs to be copied back to the hosthwaids an extra communication overhead to theafiver
computation in addition to the CUDA kernel launchégvery time step.

As mentioned earlier, multi-GPU parallelism is oatrently addressed by CUDA. We assign one CPé&athto
each GPU so that each device has its own contextt@mostListing 2 shows the host side code snippet for the
multi-GPU implementation of the projection algontihEach CPU thread executes the code given imigigi First
the GPUs copy the top and bottom cells of theidsufains fom their global memory to a matrix on kst side.
After the GPUs are synchronized using a Posix &afpthread_barrier_wait ), the GPUs read from the
host-side matrix data that represent their ghol$ eed update their global memory. For the velodiéld, this
process happens twice per time step, once aftersthéion of the momentum equations and once after
correction step. For the pressure field, data exghaccurs after each Jacobi solver iteration.

V. Kernel Acceleration Using the Shared Memory on th&sPU

A. Shared Memory Implementation

Usage of the shared memory (SM) in a kernel iseetistep process. First, the block threads copgubhdomain
they are responsible for from the global memoryhi shared memory. Then computation is done byhiteads,
using data from the shared memory. Finally the ltesuthe computation is written back to the glolmaémory
before exiting the kernel. This back and forth deaasfer between the global memory to the sharechony creates
an overhead that is not present in a global menmapfementation. Hence, the arithmetic intensitytlod kernel
should be sufficiently large to compensate for dverhead of data copying in order to benefit frdra shared
memory implementation. One way to achieve thig imtrease the size of the subdomain that is mapgpadhread
block. Figure 5 compares two different domain degositions where each block contains 4x4 threadshdrfirst
one (Fig 5a), the block is directly mapped to adeubain of 4x4 computational nodes. In order to tpdhose
computational nodes, the subdomain and all itsosuding nodes (ghost cells) need to be copied ¢ostiared
memory. To update 4x4 cells, 6x6x3 cells actuadlgchto be copied to the shared memory. In which,dass than
15% of the shared memory will be updated by theatirblock.

The second approach shown in Fig. 5b allows thréadgpdate multiple cells in a distinct verticalwon. In
this example each thread works on two cells (onthénred plane and in the orange plane). The tereasl now
working on 4x4x2 cells and 6x6x4 cells are requiretbtal. The cells to be updated now represeft #2the data

i 108 nodes in SM e 7 144 nodes in SM
S 7 | -16 computational nodes /£ 7. - 32 computational nodes

- 92 ghost cells - 112 ghost cells

a) b)

Figure 5. Two different approaches for shared memar usage in a 4x4 block configuration. Colored cellare
updated by the threads while the white cells are dyn used as data source (ghost cells). Each cell tem
represents a computational node. a) Each thread ujdes one cell only (red cells). b) Each thread woskon 2
cells in the same vertical column. Cells in red arepdated during the first iteration and orange onesn the
second iteration.
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brought to the shared memory. This can be easifyeémented by having for loop iterating in the z-direction for
each thread. Notice that the number of iterationshe z-direction is known in advance as it is medi by the
programmer. The directivépragma unroll can be used to unroll tHer loop. Then the cost of tHer loop is
not critical while the mapping shown in Fig. 5b weds the amount of time spent in transferring &ata the global
to the shared memory.

As the size of the block and the number of cellagdate per thread increase, the overhead dudadocdpying
to the shared memory is compensated by the timet gpeactual computations. For our current sharedany
implementation, each block works on two differeaxdls in the XY-plane. The size of the shared mgnhaing
limited to 16 KB, we cannot bring more than fouvdés (two inner levels and two ghost levels) irhe shared
memory if the block size is 16x16. Note that if 8f@ared memory gets too large, few threads camdager at the
same time as less registers are avaitibkn alternative implementation would be to haverde threads per block
but more levels for each thread to work. Furthststevill give us more insight on the optimal configtion.

B. Memory Model Specific Implementation of the Projecion Algorithm

The projection algorithm involves distinct stepsaipredictor-corrector fashion in the solution o fluid flow
equations. In the current study, each step is impided as a kernel to be computed on the GPU, @snsm
Listings 1 and 2. We have implemented both globdl shared memory versions of the kernels neededpiement
the projection algorithm on multi-GPU desktop phaths. Figure 6 shows the speedup for the kerneigtieg from
a shared memory implementation. The speedup isuredhselative to a global memory implementation.

Usage of the shared memory in tii@mentum
and pressurekernels make them perform over 2>
faster relative to a kernel implementation thatsus:
only the global memory. These two kernels bene
from the shared memory because the overhead (
to data transfer to the shared memory is large
compensated by their high arithmetic intensity.cAls
in a global memory implementation the numeric:
discretization scheme leads to non-coalesc
memory accesses because the scheme needs -
from neighboring cells, which slows down °° ‘
performance. The shared memory implementatic
avoids this issue by sharing data among threads ... )
the same block. The other kernels (i@arrection Figure 6. Kernel speedup when using shared memory
in Fig. 6, because their arithmetic intensity ithei 256%32x256). Tests showed that the momentum and

low or non-coalesced memory accesses are RGiSSure kernels benefit from a shared memory

substantial. implementation, giving a speedup of more than 2x
Ad-hoc testing of each kernel implementatidﬁ'atiVe to a kernel implementation that uses onlythe

for computational speedup allows us to suggesg!g@bal memory.

unique implementation of the projection algoritim

that exploits the memory architecture of the GPUdesktop platforms. Based on the implementatiorwshim

Listings 1 and 2, we suggest a shared memory imgiéattion for the velocity prediction step and thrison of the

pressure Poisson equation, whereas we suggestal giemory implementation for the kernels to corapilte

divergence field, velocity corrections and impdse bhoundary conditions.

225 2.20

N
=}
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Momentum Divergence Pressure

Kernel

VI. Results and Discussions
A. Validation of the Multi-GPU Implementation of the Navier-Stokes Solver

The lid-driven cavity problem is a well-establisheenchmark case in the CFD field, and it can bel uee
validate the implementation of the conservationsrasd momentum principles, because it is a clogst@®. The
fluid inside the cavity is driven by the motiontbk lid on the top surface. Figure 7a shows thecisl field taken
at the middle section in the vertical plane atdyestate for Re=1000 based on the lid velocity eanty height. At
this Reynolds number, the flow is laminar and remeaivo-dimensional. Note that we adopt 3D compaoitetito
assess the computational performance of GPUs ifige leomputational problems. Otherwise, the simoatan be
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Figure 7. a) Distribution of velocity magnitude andstreamlines at steady-state for Re=1000. Low velbg
regions are represented in dark blue while high vekity regions are represented in red. b) Comparisoof the
multi-GPU implementation of our CFD code results \ith benchmark data given in Ghia et af°.

performed by 2D computations. Figure7a shows thecity streamlines at steady-state. The flow stitetinside a
cavity for various Reynolds numbers is well esttidid. Any mistake in the implementation can beldyidetected
by inspecting the streamlines and the distributdrthe velocity field. For Re=1000, one should alieea main
circulation at the core of the cavity, and smatkxirculation zones at the bottom corners. The sfzhese corner
vortices increases with the Reynolds number. Taatd our multi-GPU implementation, results are pamd to
numerical data from Ghia et @lin Fig. 7b. The present results obtained from &RU code are in excellent
agreement with the results of Ghia efal.

B. Performance Evaluation of the Serial CPU Implementton of the CFD Code

Before proceeding to the GPU speedup assessmentestethe FLOPS performance of our serial CPU
implementation of the CFD code against comparappgieations. Both the serial CPU version and GPtsiea of
our CFD code adopts the same numerical methods.NR® Parallel Benchmarks(NPB'’s) were derived from
CFD codes. NPB was designed to compare the perfarenaf parallel computers and it is widely recogdias a
standard indicator of computer performance. In &dblthe LU, MG and SP benchmarks from NPB are ewetp
to our in-house developed serial CFD code prograsnineC language. The code was compiled with GNU C
Compilef? (gcc) using optimization level O3 with CPU architere specifications (i.e., -march=core2 for Ir@elre
2 Duo; —march=opteron for the AMD Opteron). The NBBnchmarks were compiled with the Intel Fortran
compiler.

Table 1 shows that the performance of our in-h@as&l CFD code is comparable to the NPB benchradies
in terms of Giga Floating Point Operations per ®€cGFLOPS). Using only a single core, the perfaroeaof our
CFD code is approximately 1.6 GFLOPS on the InteteC2 Duo 3 GHz, 1.0 GFLOPS on the AMD Opteron 2.4
GHz processors. Interestingly, the GFLOPS perfonmadrops to approximately 0.50 when the computation
problem size is substantionally increased. Figugh®vs more details about the performance of ouals€PU
version CFD code with increasing problem size.
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Table 1. GFLOPS performance of the serial CPU versih of our CFD code and NPB benchmark codes on
two different computers (Intel Core 2 Duo (E8400) ® GHz and AMD Opteron (8216) 2.4 Ghz). LU
factorizes an equation into lower and upper trianglar systems. The iteration loop of MG consists oftie
multigrid V-cycle operation and the residual calcuhtion. SP is a simulated CFD application. Our CFD
code simulates a lid-driven cavity problem.

GFLOPS Ratio
Benchmark Size Intel Core 2 Duo 3 GHz AMD Opteron 2.4 GHz Intel / AMD
LU.S 12 x12x 12 252 1.5 1.62
LUW 33 x33x33 254 1.02 248
LU.A 64 x 64 x 64 213 0.68 313
LU.B 102 x 102 x 102 1.20 0.68 1.78
MG.S 32x32x32 235 1.26 1.86
MG.W 128x 128 x128 1.64 0.87 1.88
MG.A 256 x 256 x 256 167 0.73 2.29
MG.B 256 x 256 X 256 178 0.7 2.27
SP.S 12 x12x 12 3.00 1.5 1.94
SP.W 36 x36x 36 2.36 0.76 3.09
SP.A 64 x 64 x 64 1.46 0.70 2.08
SP.B 102 x 102 x 102 1.38 0.49 281
In-house 32x32x32 158 1.03 154
CFD code 1024x32x1024 142 0.54 2.64
On the Intel Core 2 Duo 3 GHz processor, tl
serial CPU version of our CFD code perforrm 158 159 - o
pretty well as the GELO.PS _number drops only | 164  e------- o ——— '___\__f-fo\ "
10% when the domain size increases by a factor , | T

1024 (i.e., domain size increases from® 3@
1024x32). To put this into context, the S 12|
benchmark performance drops by 54% when to |
domain size increases by a factor of 614 (i. S
domain size increases from®1® 102). Figure 8 © %]
shows GFLOPS performance drop on AMI s
Opteron 2.4 GHz when the domain size gets larg
than 128x32x128 (20 MB in memory). This wa *4 [~~~ tel Core 2 Duo 3.0 Gtz
also observed with the NPB benchmark codes 0.2 {|—=—AMD Opteron 2.4 GHz
problem sizes requiring over 20 MB of memory. o ‘ ‘ ‘ ‘ ‘ ‘
The results shown in Fig. 8 and Table 1 indice 323232 643264 12832128  256x32x256  512x32x512 1024x32x1024
that the serial CPU version of our CFD code Domain size
fairly optimized, giving performance comparable tu
NPB  benchmark codes. Advance code )
optimizations  techniques may improve thlélgu_re 8. GFLO_PS performance of the serial CP_U
GFLOPS performance of the serial CPU version \§§'sion of our in-house developed CFD code with
our CFD code, but it is not pursued in the presdfgreasing computational domain size.
study.

C. Performance Results

The following computing hardware was utilized liststudy. A dual-CPU/dual-GPU platform was buiithxan
Intel Core 2 Duo 3.GHz (E8400) CPU, 4GB of memany &wo Tesla C870 boards. Each Tesla board provié8s
streaming processor cores and 1.5 GB of globalcgewiemory. A second platform with 8 AMD Opteron@Hkz
(8216) dual-core CPUs, and a Tesla S870 serveidaswl6 CPU cores and four GPUs. Each GPU boad inse
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this study can deliver a theoretical peak perforreaof 512 GFLOPS These two high performance computing
platforms with different GPU-CPU configurations wer
Used -to perform Speedup and multl'GPU Sca”r 1207 | Intel Core 2 Duo Intel Core 2 Duo 3.0 GHz (dual core)
analys_ls' . . m AMD Opteron AMD Opteron 2.4G|—;z (quad CPU)
Using only a single CPU core, the serial CP! 100
version of our CFD code takes 82,930 seconds on =~ %]
Intel Core 2 Duo 3.0 GHz CPU and 218,580 seconds
AMD Opteron 2.4 GHz CPU to simulate the lid-driver 50|
cavity problem with a computational grid of
1024x32x102 for 10,000 time steps. The serial CF
version of the CFD code runs faster on Intel Cof2ud
CPU than on AMD Opteron CPU because of its larg
L2 cache and its better clock frequency. On theerott
hand the execution time for the GPU code is bare
dependent on the CPU clock speed. GPU performat
was nearly the same on both the Intel and AM 20
platforms. As a result GPU performance relativehie
CPU performance is better for the AMD Opteron 2. o
GHz platform as shown in Fig. 9. On our Intel C@re 1 2 4
Duo platform the GPU code performs 13 and 21 tim Number of GPUS
faster than the CPU code with one and two GPL.,
respectively. On the AMD Opteron 2.4 GHz platforfnigure 9. GPU code speedup relative to the serialFlJ
the GPU code performs 33, 53 and 100 times fagiefle for a domain of 1024x32x1024 computational
using one, two and four GPUs respectively. nodes. Quad-GPU results are currently not available
Figure 10 shows computational speedup with respt@tthe Intel Core 2 Duo platform, because we do rto
to different problem sizes. On the AMD Opterofave the hardware available for the present study.
platform (Fig. 10a), depending on the problem sihe,
guad-GPU performance varies from 10x to 100x nedatd the serial CPU version of the CFD code. Gnlttiel
Core 2 Duo platform (Fig. 10b), the dual-GPU parfance varies from 5x to 21x. The speedup numbers ar
impressive for large problem size, because thérasdtic intensity on each GPU increases with probd&ra, and
the time spent on data communication with other &ROmpared to the time spent on computation becomes
relatively shorter. For small problems, a multi-GBamputation performs slower than the single-GPmatation.
On the AMD Opteron platform, for a problem of si@4x32x64, the dual-GPU solution performs slowenttize
single-GPU, and the quad-GPU solution performs stothan the dual-GPU (Fig. 10a). As more GPUs are
available, the domain treated in the simulationusthde larger to have each GPU working on largalsaiain, and
hide the latency due to GPU data exchange. Baseauoncurrent implementation, tests have shown that
performance is better when there is a one-to-oniehimg between the number of GPUs and number of <C&U
desktop platforms. For example, a dual-CPU platfooupled to the quad-GPU S870 server did not showngain
in performance over a dual-CPU dual-GPU Tesla Cgla®orm. Note that this statement is dependenibon
implementation, and performance may be improvedvgylapping communication with computation.
Figure 11 shows the multi-GPU performance scalingle NVIDIA Tesla S870 server. The speedup results
shown in Fig. 9a are converted to scaling numtgysncreasing the problem size and adjusting the ef the data
to exchange between the GPUSs, the performanceeoquidid-GPU platform is 3% the performance of alsi@PU,
and the dual-GPU solution performs 1.6x faster tha@nsingle GPU. These performance numbers ardHassthe
ideal performance numbers of 4x and 2x, respegtivEhe bottleneck of the multi-GPU solution is tHata
exchange between the GPUs, which requires synctatimin and data transfer form the different GPUthohost
and vice versa. Pinned memory (or page-locked mgmasage may reduce the time spent in exchangitg da
between the host and the devices, leading to arlstaling in parallel multi-GPU computations.

60 -

Speedup (x)

40 4

VII. Conclusions

We have presented the implementation of Navier<oéquations for incompressible fluid flow on depkt
platforms with multi-GPUs. NVIDIA’s CUDA programmgnmodel is used to implement the discretized fofrthe
governing equations. The major steps of the prmiectigorithm are implemented with separate CUDAkés, and
a unique implementation that exploits the memorgrdrichy of the CUDA programming model is suggested.
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Kernels for the velocity predictor step and theuoh of the pressure Poisson equation were imphéadeusing the
shared memory of the device, whereas a global menmoplementation was pursued for the kernels that a
responsible to calculate the divergence field aekbaity corrections and to apply the boundary ctods. This
unique combination resulted in factor of two spgetklative to global memory only implementationtbe device.
To the best of our knowledge, our work is the fisplementation of an incompressible flow Navieol&s solver
on multi-GPU desktop platforms.

Overall, we have accelerated the numerical solutbimcompressible fluid flow equations by a factir100
using the NIVIDIA S870 Tesla server with quad GPUBe speedup number is measured relative to tled U
version of our CFD code that was executed usirigglescore of an AMD Opteron 2.4 GHz processor.Aéspect
to a single core of an Intel Core 2 Duo 3.0 GHzpssor, we have achieved a speedup of 13 and Bsiwile and
dual GPUs (NVIDIA Tesla C870), respectively. Sanuenerical methods were adopted in both the CPU dad G
versions of the CFD code. We have observed thati-@8U scaling and speedup results improve withaasing
computational problem size, suggesting that contipumally “big” problems can be tackled with GPU sfers with
multi-GPUs in each node. We have also found tha imulti-GPU desktop platform, one CPU core shcagd
dedicated to each active GPU in order to obtairdgmaling performance across multi-GPUs.

Our future work will focus on CUDA-specific optind#ion strategies and adding a complex geometryliiya
to our multi-GPU parallel CFD code. We also plaextend our code to address turbulent flow regimes.
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Figure 10. Single and multi-GPU speedup relativeot a single CPU core. a) AMD Opteron 2.4GHz with
NVIDIA S870 Quad Tesla server b) Intel Core 2 Duo ®GHz with dual NVIDIA C870 Tesla boards.
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Figure 11. Multi-GPU scaling on the S870 server wlt quad-CPU platform. As the problem
size increases the multi-GPU solutions scale better
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