
Boise State University
ScholarWorks
Mechanical and Biomedical Engineering Faculty
Publications and Presentations

Department of Mechanical and Biomedical
Engineering

1-1-2009

CUDA Implementation of a Navier-Stokes Solver
on Multi-GPU Desktop Platforms for
Incompressible Flows
Julien C. Thibault
Boise State University

Inanc Senocak
Boise State University

This document was originally published by American Institute of Aeronautics and Astronautics in 47th AIAA Aerospace Sciences Meeting Including The
New Horizons Forum and Aerospace Exposition. Copyright restrictions may apply. http: http://pdf.aiaa.org/preview/CDReadyMASM09_1811/
PV2009_758.pdf

https://scholarworks.boisestate.edu
https://scholarworks.boisestate.edu/mecheng_facpubs
https://scholarworks.boisestate.edu/mecheng_facpubs
https://scholarworks.boisestate.edu/mecheng
https://scholarworks.boisestate.edu/mecheng
http://pdf.aiaa.org/preview/CDReadyMASM09_1811/PV2009_758.pdf
http://pdf.aiaa.org/preview/CDReadyMASM09_1811/PV2009_758.pdf

American Institute of Aeronautics and Astronautics

1

CUDA Implementation of a Navier-Stokes Solver on Multi-
GPU Desktop Platforms for Incompressible Flows

Julien C. Thibault1 and Inanc Senocak2
Boise State University, Boise, Idaho, 83725

Graphics processor units (GPU) that are traditionally designed for graphics rendering
have emerged as massively-parallel "co-processors" to the central processing unit (CPU).
Small-footprint desktop supercomputers with hundreds of cores that can deliver teraflops
peak performance at the price of conventional workstations have been realized. A
computational fluid dynamics (CFD) simulation capability with rapid computational turn-
around time has the potential to transform engineering analysis and design optimization
procedures. We describe the implementation of a Navier-Stokes solver for incompressible
fluid flow using desktop platforms equipped with multi-GPUs. Specifically, NVIDIA’s
Compute Unified Device Architecture (CUDA) programming model is used to implement the
discretized form of the governing equations. The projection algorithm to solve the
incompressible fluid flow equations is divided into distinct CUDA kernels, and a unique
implementation that exploits the memory hierarchy of the CUDA programming model is
suggested. Using a quad-GPU platform, we observe two orders of magnitude speedup
relative to a serial CPU implementation. Our results demonstrate that multi-GPU desktops
can serve as a cost-effective small-footprint parallel computing platform to accelerate CFD
simulations substantially.

I. Introduction

n the last decade, CPU designers have focused on developing multi-core architectures instead of increasing the
clock frequency by putting more transistors on the die because of power constraints1. GPU designers have
adopted the many-core strategy early on, since graphics rendering is a parallel task. GPUs are based on the stream

processing architecture2 that is suitable for compute-intensive parallel tasks3. Modern GPUs can provide memory
bandwidth and floating-point performances that
are orders of magnitude faster than a standard
CPU. Figure 1 depicts the growing gap in peak
performance, measured in floating point
operations per second (FLOPS) between GPU
and CPU over the last five years. Currently,
NVIDIA GPUs outperform Intel CPUs on
floating point performance (Fig. 1) and memory
bandwidth, both by a factor of roughly ten3.

Until recently, using the GPUs for general-
purpose computation was a complicated exercise.
A good knowledge of graphics programming was
required, because GPU’s old fixed-function
pipeline did not allow complex operations4. GPUs
have evolved into a programmable engine,
supported by new programming models trying to
find the right balance between low access to the
hardware and high-level programmability4. Brook
programming model, released in 2004 by

1 Graduate Research Assistant, Department of Computer Science, Student Member AIAA.
2 Assistant Professor, Department of Mechanical & Biomedical Engineering, Member AIAA.

I

Figure 1. Evolution of floating-point performance for Intel
CPUs and NVIDIA GPUs (courtesy of NVIDIA).

47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition
5 - 8 January 2009, Orlando, Florida

AIAA 2009-758

Copyright © 2009 by authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

American Institute of Aeronautics and Astronautics

2

Stanford University, offered one of the first development platforms for general purpose GPU (GPGPU)
programming3,5. Brook provides a GPU abstraction layer that enables data parallelism. It keeps the programmer
away from having an extensive knowledge of graphics programming - like OpenGL - while being platform
independent. NVIDIA recently released a more advanced programming model for its own line of GPUs: Compute
Unified Device Architecture (CUDA)3. With CUDA, NVIDIA offers a common architecture and programming
model for its own line of GPUs. The C-based application programming interface (API) of CUDA enables data-
parallelism through the use of shared memory, but also computation parallelism thanks to the introduction of the
thread and grid concepts. The CUDA programming model has found success in the GPGPU community. There is
also a recent effort called MCUDA6 to program multi-core CPU architectures. Advanced Micro Devices (AMD), on
the other hand, offers Brook+, a modified version of the Brook open source compiler. Additionally, AMD’s
Compute Abstraction Layer (CAL) is used as a cross-platform interface to the GPU. Both AMD CAL and Brook+
are available in AMD’s software development kit (SDK)7.
 Advances in many-core architectures have been tremendous, but using the full potential of many-core
architectures is not an easy task. Engineers and scientists may need to rewrite and optimize their legacy sequential
codes to harness the compute-power of modern day multi-core CPUs, and many-core GPUs. Message Passing
Interface (MPI) programming8 has been widely adopted in parallel scientific computations. MPI can be adopted for
parallel computations both on shared and distributed memory systems, but it has better scaling properties for
distributed memory systems by design8. MPI provides a high level API that allows programmers to transparently
make use of multiple processors on both shared and distributed systems. The programmer does not have to deal with
the details of the communication protocol between the nodes. On shared memory systems, Posix multithreading
offers low level functions to implement multi-threaded systems, while OpenMP provides a certain abstraction layer9,
which makes it more accessible to software developers. In contrast, CUDA offers a different approach that
specifically targets the many-cores on a single GPU. It is the programmer’s responsibility to optimize the usage of
the memory and the threads available on the streaming cores10. Implementation for multiple GPUs is explicitly
performed by programmers, and multi-GPU parallelism is not currently addressed by CUDA.

Prior to the introduction of the CUDA and Brook programming models, several Navier-Stokes solvers have been
implemented for the GPU. Harris11 implemented a 3D solver to create a physically-based cloud simulation using the
Cg programming language from NVIDIA. It is a high-level programming language for graphics on GPUs, which
operates as a layer above OpenGL. His implementation was based on the “stable fluids” method proposed by
Stam12. This method is adapted to graphics application because of the real-time visualization constraint. In Ref. 13
the Navier-Stokes equations are solved for flow around complex geometries following the work of Harris11. Due to
its relative potential for easy parallelization, the Lattice-Boltzman method (LBM) has also been implemented in
different studies addressing complex geometries. In Ref. 14, GPU implementation of LBM resulted in speedup of
15× relative to the CPU implementation. In Ref. 15, an LBM was implemented on a GPU cluster to calculate winds
and contaminant dispersion in urban areas. A speedup of 4.6× relative to a CPU cluster was achieved in their
study15, which demonstrates that GPU clusters can serve as an efficient platform for scientific computing.

High performance parallel computing with CUDA has already attracted various scientists in several disciplines,
such as molecular dynamics16-18, computational biology19, linear algebra20,21, weather forecasting22 and artificial
intelligence23. In the computational fluid dynamics (CFD) field, Tolke and Krafczyk 24 implemented a 3D Lattice-
Boltzman method for flow through a generic porous medium. They obtained a gain of up to two orders of magnitude
with respect to the computational of an Intel Xeon 3.4GHz. Brandvik and Pullan25 mapped 2D and 3D Euler solvers
to the GPU using BrookGPU and CUDA programming models. For the CUDA version of the 3D Euler solver, their
computations on NVIDIA 8800GTX showed a speedup of 16× over the CPU, whereas the BrookGPU
implementation of the 3D Euler solver showed a modest speedup of only 3× on the ATI 1950XT. Molemaker et al.26
developed a multi-grid method to solve the pressure Poisson equation. The CUDA implementation of the multi-grid
pressure Poisson solver produced a speedup of 55× relative to a 2.2MHz AMD Opteron processor26.
 The recent literature attests to the compute-potential of GPU computing with new programming models.
Numerous studies have adopted the CUDA programming model to numerical problems that have practical
applications in engineering and science at large27. In this study, we present the implementation of a 3-D Cartesian-
grid CFD code on multi-GPU/multi-CPU desktop platforms for incompressible fluid flow simulations. Specifically,
we adopt the NVIDIA CUDA programming model to implement the discretized form of the Navier-Stokes
equations on desktop platforms with multiple GPUs. Communication among GPUs is enabled with POSIX
threading. We validate our multi-GPU parallel CFD code against the well established lid-driven cavity flow
problem28. Several performance tests that assess the computational speedup of multi-GPU platforms relative to a
serial CPU code are presented. To the best of our knowledge, our work is the first implementation of an
incompressible flow Navier-Stokes solver on multi-GPU desktop platforms.

American Institute of Aeronautics and Astronautics

3

II. Governing Equations and Numerical Approach

A. Governing Equations of Incompressible Fluid Flows

The Navier-Stokes equations for incompressible fluid flows can be written as follows

0=⋅∇ u , (1)

uuu
u 21 ∇+∇−=⋅∇+

∂
∂ ν

ρ
P

t
, (2)

where u is the velocity vector, P is the pressure, ρ is the density and ν is the kinematic viscosity.

B. Numerical Approach

Second-order accurate central difference scheme is used to discretize the advection and diffusion terms of the

Navier-Stokes equations on a uniform staggered grid29. First-order accurate, explicit Euler scheme is used for the
time derivative term. The projection algorithm30 is then adopted to find a numerical solution to the Navier-Stokes
equation for incompressible fluid flows. In the projection algorithm, the velocity field u* is predicted using the
momentum equations without the pressure gradient term as follows29, 30

)(2* tttt t uuuuu ∇+⋅∇−∆+= ν , (3)

where the index t and ∆t represents the time level and time step size, respectively.
 The predicted velocity field u* does not satisfy the divergence free condition because the pressure gradient term
is not included in Eq. (3). By enforcing the divergence free condition on the velocity field at time (t+1), the
following pressure Poisson equation can be derived from the momentum equations given in Eq. (2)

*12 u⋅∇
∆

=∇ +

t
Pt ρ

 . (4)

In the present study, the above equation is solved using a Jacobi iterative solver to time march the equations to a
steady-state solution. For time-accurate simulations, a more efficient solver (e.g., geometric multi-grid method)
should be adopted for time-accurate unsteady simulations. The pressure field at time (t+1) is then used to correct the
predicted velocity field u* as follows

11 * ++ ∇∆−= tt P
t

ρ
uu

. (5)

III. Programming Model for GPU Computing

CUDA is a new programming model developed by NVIDIA to harness the computational power of their GPUs.

CUDA is an extension to the C programming language and it enables the developers to launch and manage
massively parallel computations on the GPU. The reader is referred to the CUDA programming guide for more
details3. In this section we summarize the GPU hardware and the programming model. Hereinafter, we
interchangeably use the term “host” to refer to the CPU and the term “device” to refer to the GPU.

A. Hardware Architecture

GPUs are originally developed for graphics rendering that requires parallel computation with intense arithmetic

operations. A GPU is a set of single instruction, multiple data (SIMD) multiprocessors. In GPU designs, transistors

American Institute of Aeronautics and Astronautics

4

are devoted to data processing rather than data caching and flow control4. In the CUDA programming model,
compute-intensive tasks of an application are grouped into an instruction set and passed on to the GPU such that
each thread core works on different data but executes the same instruction3. The memory hierarchy of CUDA is
similar to the memory hierarchy of a conventional multiprocessor. Closer to the core, the local registers allow fast
ALU operations (L1 cache). The shared memory, seen by all the cores of a single multiprocessor, can be compared
to a second-level cache (L2), as it provides a memory closer to the processors that will be used to store data that tend
to be used over time by any core3. The difference in CUDA is that the programmer is responsible for the
management of the shared memory or the “GPU cache”. The last level in this hierarchy is the global memory. It can
be accessed by any processor of the GPU, but for a higher latency cost. Threads can actually perform simultaneous
scatter or simultaneous gather operations if those addresses are aligned in memory3. Coalesced memory access is
crucial for superior kernel performance as it hides the latency of the global memory. The challenge for a CUDA
software developer is then, not only the parallelization of the code, but also the optimization of the memory accesses
by making the best use of the shared memory and the coalesced access to the global device memory .

Each multiprocessor also has read-only constant cache and texture cache. The constant cache can be used by the

threads of a multiprocessor when trying to read the same constant value at the same time. Texture cache on the other
hand is optimized for 2D spatial locality and should be preferred over global device memory when coalesced read
cannot be achieved3.

B. Programming model

The computation core of the CUDA programming model is the kernel, which is passed on to the GPU and

executed by all the processor units, using different data streams. Figure 2b presents the layout of the threads in the
CUDA programming model. Each kernel is launched from the host side (CPU), and it is mapped to a thread grid on
the GPU. Each grid is composed of thread blocks. All the threads from a particular block have access to the same
shared memory and can synchronize together. On the other hand, threads from different blocks cannot synchronize
and can exchange data only through the global device memory3. A single block can only contain a limited number of
threads, depending on the device model. But different blocks can be executed in parallel. Blocks executing the same
kernel are batched together into a grid. The programmer needs to define the number of threads per block and the grid

a) b)

Figure 2. a) CUDA SIMD multiprocessor architecture (courtesy of NVIDIA). b) CUDA thread organization
(courtesy of NVIDIA). In this example, the grid is composed of 3×2 blocks, each containing 5×3 threads.

American Institute of Aeronautics and Astronautics

5

size (number of blocks) before launching the kernel. The parallel execution of the blocks is then handled by CUDA
in a batch mode3.

As mentioned earlier, CUDA API is an extension to the C programming language. It provides functions to
manage the computations on the GPU. The full list of functions is discussed in detail in the CUDA programming
guide3. Major functions that we have benefited in our study are cudaMalloc() and cudaMemcpy() functions.
These functions allocate memory on the GPU and copy data from the CPU memory into the device memory of the
GPU, respectively. cudaFree() function is used to free memory on the device. The kernel is launched by
specifying the size of the grid (number of blocks) and the size of the blocks (number of threads) using the following
prototype: kernel_name<<grid size, block size>>() . __synchthreads() can be used inside a
kernel to synchronize all the threads of a same block. Global synchronization is not addressed by the CUDA model.
The only way to force a global synchronization is to exit the kernel before launching a new one.

In addition, the CUDA API introduces the qualifiers _shared_, _device_ and _constant_ to define the
type of memory a variable should use. The function qualifiers _device_ , _global_ , and _host_ specify
whether the GPU or the CPU should execute and call the qualified function3.

IV. Multi-GPU Implementation of a 3D Incompressible Navier-Stokes Solver

A. Single GPU Implementation

Let NX, NY and NZ be the number of computational nodes in the x, y and z directions for a flow domain,
respectively. The 3D domain of size NX× NY×NZ is represented by a 2D matrix of width NX and height NY×NZ
on the host side, as shown in Fig. 3. On the GPU side, the same representation is used to store data in global
memory. This 2D mapping translates to efficient data transfer between the host (CPU) and the device (GPU). Note
that several matrices are needed to represent the pressure and velocity components at different time levels. Memory
allocation on the device is done only once before starting the time stepping.

Listing 1 shows the host side code for the time stepping. The code snippet is composed of two nested loops. The

outer loop is used to advance the solution in time, and the inner loop is used for the iterations of the Jacobi solver to
numerically solve the pressure Poisson equation (Eq. 6). In our implementation, the velocity field at time t depends
only on the velocity field at t-1. Six different matrices are used to represent the velocity fields at the time t (u, v,
w) and t-1 (uold, vold, wold). The matrices are swapped at the end of each time step for reuse as shown in
Listing 1. In a similar way, the Jacobi solver requires two matrices p and pold , which are swapped after each
iteration of the Jacobi solver. As shown in Listing 1 the GPU code is composed of six different kernels to implement
the major steps of the projection algorithm30. Separate kernels are needed to achieve global synchronization across
the CUDA blocks before proceeding to the next time step for the computations.

Figure 3. Mapping of a 3D computational domain to a 2D matrix. The mapping is used on both the CPU and
the GPU sides. Cells in white on the 2D matrix represent the ghost (halo) cells to apply the boundary
conditions.

z = 0

z = 1

z = NZ-1

z = 0

z = 1

z = NZ-1

x

y
z

NY

NX

American Institute of Aeronautics and Astronautics

6

//for each time step
for (t=0; t < ntstep; t++)
{

//call kernel to compute momentum (ut, vt, wt)
momentum << grid, block >> (u, v, w, uold, vold, wo ld)
//call kernel to compute boundary conditions
momentum_bc << grid, block >> (u, v, w)
//call kernel to compute the divergence (div)
divergence << grid, block >> (u, v, w, div)

//for each Jacobi solver iteration
for (j=0; j < njacobi; j++)
{

//call kernel to compute pressure
pressure << grid, block >> (u, v, w, p, pold, div)
//rotate matrices
ptemp = pold; pold=p; p=ptemp;
//call kernel to compute boundary conditions
pressure_bc << grid, block >> (p)

}
//call kernel to correct velocity (ut, vt, wt)
correction << grid, block >> (u, v, w, p)
//call kernel to compute boundary conditions
momentum_bc << grid, block >> (u, v, w)

//rotate matrices
utemp = uold; uold=u; u=utemp;
vtemp = vold; vold=v; v=vtemp;
wtemp = wold; wold=w; w=wtemp;

}

Listing 1. Partial host-side code that implements the projection algorithm30 to solve the Navier-Stokes
equations for incompressible fluid flow. The outer loop is used for time stepping while the inner loop is in
the iterative solution of the pressure Poisson equation.

Figure 4. a) Subdomain assignment for multi-GPU solution. b) Representation of the GPU global memory.
Each GPU needs ghost cells to represent the top and bottom neighboring cells which are updated by other
GPUs (represented here in red).

GPU 0

GPU 3

GPU 2

GPU 1

(a) (b)

filled with data from GPU 1

updated by GPU 2
(from z=(NZ/4)×2 to
z=(NZ/4)×3)

x

y

z

NY

NX

filled with data from GPU 3

American Institute of Aeronautics and Astronautics

7

A. Multi-GPU Implementation

//for each time step
for (t=0; t < steps; t++)
{
 //copy velocity ghost cells from host to GPU (top and bottom)
 …
 //call kernel to compute momentum
 momentum <<< grid, block >>>(u, v, w, uold, vold, wold, gpuCount, *device);
 //apply boundary conditions
 momentum_bc <<< grid, block >>>(u, v, w, gpuCount, *device);

 //copy velocity border cells from GPU to host memory(top and bottom)
 …
 //synchronize with other threads before reading updated ghost cells
 pthread_barrier_wait(&barrier);

 //copy velocity ghost cells from host to GPU(top and bottom)
 …

 //call kernel to compute divergence
 divergence <<< grid, block >>>(u, v, w, div, gpuCo unt, *device);

 //for each Jacobi solver iteration
 for(m = 0; m< njacobi; m++)
 {
 // compute pressure
 pressure <<< grid, block >>>(div, pold, p, gpuCou nt, *device);
 ptemp = pold; pold=p; p=ptemp;
 pressure_bc <<< gridDims, blockDims >>>(d_p, s_gpuCount, *device);

 //copy pressure border cells from GPU to host memory (top and bottom)
 …
 //synchronize with other threads before reading updated ghost cells
 pthread_barrier_wait(&barrier);

 //copy pressure ghost cells from host to GPU (top and bottom)
 …
 }
 //velocity correction
 correction <<< grid, block >>>(u, v, w, p, gpuCoun t, *device);
 momentum_bc <<< grid, block>>>(u, v, w, gpuCount, *device);

 //copy velocity border cells from GPU to host memory(top and bottom)
 …
 //synchronize with other threads before reading updated ghost cells
 pthread_barrier_wait(&barrier);

 //rotate matrices
 utemp = uold; uold=u; u=utemp;
 vtemp = vold; vold=v; v=vtemp;
 wtemp = wold; wold=w; w=wtemp;
}

Listing 2. Partial host-side code that implements the projection algorithm30 to solve the Navier-Stokes
equations for incompressible fluid flow. The outer loop is used for time stepping while the inner loop is in the
iterative solution of the pressure Poisson equation. A CPU thread is created for each available GPU and
executes the code above. Synchronization between the CPU threads is done through a Posix barrier.

American Institute of Aeronautics and Astronautics

8

In the multi-GPU implementation, each GPU is responsible for a subdomain of size NX×NY×(NZ/number of
GPUs), as shown in Fig. 4a. The whole domain is represented on the host side while the GPUs only store their
respective subdomains in global memory, and the ghost cells used to update the cells at the bottom and the top of the
subdomain. As shown in Fig. 4b, 2×NX×NY ghost cells need to be filled with data from the GPUs responsible for
the top and bottom neighboring subdomains. At the GPU level, the subdomain is mapped to a 2D CUDA grid the
same way it was for the single-GPU implementation.
 With the domain decomposition shown in Fig. 4a, each GPU needs neighboring data computed by other GPUs
which means all GPUs need to synchronize to exchange velocity and pressure fields at each time step. But a GPU
cannot directly exchange data with another GPU. Hence, ghost cells at the multi-GPU domain decomposition
boundaries needs to be copied back to the host, which adds an extra communication overhead to the overall
computation in addition to the CUDA kernel launches at every time step.
 As mentioned earlier, multi-GPU parallelism is not currently addressed by CUDA. We assign one CPU thread to
each GPU so that each device has its own context on the host. Listing 2 shows the host side code snippet for the
multi-GPU implementation of the projection algortihm. Each CPU thread executes the code given in Listing 2. First
the GPUs copy the top and bottom cells of their subdomains fom their global memory to a matrix on the host side.
After the GPUs are synchronized using a Posix barrier (pthread_barrier_wait), the GPUs read from the
host-side matrix data that represent their ghost cells and update their global memory. For the velocity field, this
process happens twice per time step, once after the solution of the momentum equations and once after the
correction step. For the pressure field, data exchange occurs after each Jacobi solver iteration.

V. Kernel Acceleration Using the Shared Memory on the GPU

A. Shared Memory Implementation

Usage of the shared memory (SM) in a kernel is a three-step process. First, the block threads copy the subdomain

they are responsible for from the global memory to the shared memory. Then computation is done by the threads,
using data from the shared memory. Finally the result of the computation is written back to the global memory
before exiting the kernel. This back and forth data transfer between the global memory to the shared memory creates
an overhead that is not present in a global memory implementation. Hence, the arithmetic intensity of the kernel
should be sufficiently large to compensate for the overhead of data copying in order to benefit from the shared
memory implementation. One way to achieve this is to increase the size of the subdomain that is mapped to a thread
block. Figure 5 compares two different domain decompositions where each block contains 4×4 threads. In the first
one (Fig 5a), the block is directly mapped to a subdomain of 4×4 computational nodes. In order to update those
computational nodes, the subdomain and all its surrounding nodes (ghost cells) need to be copied to the shared
memory. To update 4×4 cells, 6×6×3 cells actually need to be copied to the shared memory. In which case, less than
15% of the shared memory will be updated by the thread block.

The second approach shown in Fig. 5b allows threads to update multiple cells in a distinct vertical column. In
this example each thread works on two cells (one in the red plane and in the orange plane). The threads are now
working on 4×4×2 cells and 6×6×4 cells are required in total. The cells to be updated now represent 22% of the data

Figure 5. Two different approaches for shared memory usage in a 4×4 block configuration. Colored cells are
updated by the threads while the white cells are only used as data source (ghost cells). Each cell center
represents a computational node. a) Each thread updates one cell only (red cells). b) Each thread works on 2
cells in the same vertical column. Cells in red are updated during the first iteration and orange ones in the
second iteration.

a) b)

108 nodes in SM
- 16 computational nodes
- 92 ghost cells

144 nodes in SM
- 32 computational nodes
- 112 ghost cells

American Institute of Aeronautics and Astronautics

9

brought to the shared memory. This can be easily implemented by having a for loop iterating in the z-direction for
each thread. Notice that the number of iterations in the z-direction is known in advance as it is defined by the
programmer. The directive #pragma unroll can be used to unroll the for loop. Then the cost of the for loop is
not critical while the mapping shown in Fig. 5b reduces the amount of time spent in transferring data from the global
to the shared memory.

As the size of the block and the number of cells to update per thread increase, the overhead due to data copying
to the shared memory is compensated by the time spent on actual computations. For our current shared memory
implementation, each block works on two different levels in the XY-plane. The size of the shared memory being
limited to 16 KB, we cannot bring more than four levels (two inner levels and two ghost levels) into the shared
memory if the block size is 16×16. Note that if the shared memory gets too large, few threads can be created at the
same time as less registers are available10. An alternative implementation would be to have fewer threads per block
but more levels for each thread to work. Further tests will give us more insight on the optimal configuration.

B. Memory Model Specific Implementation of the Projection Algorithm

The projection algorithm involves distinct steps in a predictor-corrector fashion in the solution of the fluid flow

equations. In the current study, each step is implemented as a kernel to be computed on the GPU, as shown in
Listings 1 and 2. We have implemented both global and shared memory versions of the kernels needed to implement
the projection algorithm on multi-GPU desktop platforms. Figure 6 shows the speedup for the kernels resulting from
a shared memory implementation. The speedup is measured relative to a global memory implementation.

Usage of the shared memory in the momentum
and pressure kernels make them perform over 2×
faster relative to a kernel implementation that uses
only the global memory. These two kernels benefit
from the shared memory because the overhead due
to data transfer to the shared memory is largely
compensated by their high arithmetic intensity. Also
in a global memory implementation the numerical
discretization scheme leads to non-coalesced
memory accesses because the scheme needs data
from neighboring cells, which slows down
performance. The shared memory implementation
avoids this issue by sharing data among threads in
the same block. The other kernels (i.e., correction,
momentum_bc and pressure_bc) are not presented
in Fig. 6, because their arithmetic intensity is either
low or non-coalesced memory accesses are not
substantial.

Ad-hoc testing of each kernel implementation
for computational speedup allows us to suggest a
unique implementation of the projection algorithm30
that exploits the memory architecture of the GPU on desktop platforms. Based on the implementation shown in
Listings 1 and 2, we suggest a shared memory implementation for the velocity prediction step and the solution of the
pressure Poisson equation, whereas we suggest a global memory implementation for the kernels to compute the
divergence field, velocity corrections and impose the boundary conditions.

VI. Results and Discussions

A. Validation of the Multi-GPU Implementation of the Navier-Stokes Solver

The lid-driven cavity problem is a well-established benchmark case in the CFD field, and it can be used to

validate the implementation of the conservation mass and momentum principles, because it is a closed system. The
fluid inside the cavity is driven by the motion of the lid on the top surface. Figure 7a shows the velocity field taken
at the middle section in the vertical plane at steady state for Re=1000 based on the lid velocity and cavity height. At
this Reynolds number, the flow is laminar and remains two-dimensional. Note that we adopt 3D computations to
assess the computational performance of GPUs for large computational problems. Otherwise, the simulation can be

2.25 2.20

0.51

0.0

0.5

1.0

1.5

2.0

2.5

Momentum Divergence Pressure

Kernel

S
p

ee
d

u
p

 (
x)

Figure 6. Kernel speedup when using shared memory
over global memory (computational domain size is
256×32×256). Tests showed that the momentum and
pressure kernels benefit from a shared memory
implementation, giving a speedup of more than 2×
relative to a kernel implementation that uses only the
global memory.

American Institute of Aeronautics and Astronautics

10

performed by 2D computations. Figure7a shows the velocity streamlines at steady-state. The flow structure inside a
cavity for various Reynolds numbers is well established. Any mistake in the implementation can be quickly detected
by inspecting the streamlines and the distribution of the velocity field. For Re=1000, one should observe a main
circulation at the core of the cavity, and smaller recirculation zones at the bottom corners. The size of these corner
vortices increases with the Reynolds number. To validate our multi-GPU implementation, results are compared to
numerical data from Ghia et al.28 in Fig. 7b. The present results obtained from the GPU code are in excellent
agreement with the results of Ghia et al.28

B. Performance Evaluation of the Serial CPU Implementation of the CFD Code

Before proceeding to the GPU speedup assessment, we test the FLOPS performance of our serial CPU

implementation of the CFD code against comparable applications. Both the serial CPU version and GPU version of
our CFD code adopts the same numerical methods. The NAS Parallel Benchmarks31 (NPB’s) were derived from
CFD codes. NPB was designed to compare the performance of parallel computers and it is widely recognized as a
standard indicator of computer performance. In Table 1, the LU, MG and SP benchmarks from NPB are compared
to our in-house developed serial CFD code programmed in C language. The code was compiled with GNU C
Compiler32 (gcc) using optimization level O3 with CPU architecture specifications (i.e., -march=core2 for Intel Core
2 Duo; –march=opteron for the AMD Opteron). The NPB benchmarks were compiled with the Intel Fortran
compiler.
 Table 1 shows that the performance of our in-house serial CFD code is comparable to the NPB benchmark codes
in terms of Giga Floating Point Operations per Second (GFLOPS). Using only a single core, the performance of our
CFD code is approximately 1.6 GFLOPS on the Intel Core 2 Duo 3 GHz, 1.0 GFLOPS on the AMD Opteron 2.4
GHz processors. Interestingly, the GFLOPS performance drops to approximately 0.50 when the computational
problem size is substantionally increased. Figure 8 shows more details about the performance of our serial CPU
version CFD code with increasing problem size.

a) b)

Figure 7. a) Distribution of velocity magnitude and streamlines at steady-state for Re=1000. Low velocity
regions are represented in dark blue while high velocity regions are represented in red. b) Comparison of the
multi-GPU implementation of our CFD code results with benchmark data given in Ghia et al28.

American Institute of Aeronautics and Astronautics

11

 On the Intel Core 2 Duo 3 GHz processor, the
serial CPU version of our CFD code performs
pretty well as the GFLOPS number drops only by
10% when the domain size increases by a factor of
1024 (i.e., domain size increases from 323 to
10242×32). To put this into context, the SP
benchmark performance drops by 54% when the
domain size increases by a factor of 614 (i.e.,
domain size increases from 123 to 1023). Figure 8
shows GFLOPS performance drop on AMD
Opteron 2.4 GHz when the domain size gets larger
than 128×32×128 (20 MB in memory). This was
also observed with the NPB benchmark codes for
problem sizes requiring over 20 MB of memory.

The results shown in Fig. 8 and Table 1 indicate
that the serial CPU version of our CFD code is
fairly optimized, giving performance comparable to
NPB benchmark codes. Advance code
optimizations techniques may improve the
GFLOPS performance of the serial CPU version of
our CFD code, but it is not pursued in the present
study.

C. Performance Results

 The following computing hardware was utilized in this study. A dual-CPU/dual-GPU platform was built with an
Intel Core 2 Duo 3.GHz (E8400) CPU, 4GB of memory and two Tesla C870 boards. Each Tesla board provides 128
streaming processor cores and 1.5 GB of global device memory. A second platform with 8 AMD Opteron 2.4GHz
(8216) dual-core CPUs, and a Tesla S870 server provides 16 CPU cores and four GPUs. Each GPU board used in

Table 1. GFLOPS performance of the serial CPU version of our CFD code and NPB benchmark codes on
two different computers (Intel Core 2 Duo (E8400) 3.0 GHz and AMD Opteron (8216) 2.4 Ghz). LU
factorizes an equation into lower and upper triangular systems. The iteration loop of MG consists of the
multigrid V-cycle operation and the residual calculation. SP is a simulated CFD application. Our CFD
code simulates a lid-driven cavity problem.

Ratio

Benchmark Size Intel Core 2 Duo 3 GHz AMD Opteron 2.4 GHz Intel / AMD

LU.S 12 x 12 x 12 2.52 1.55 1.62

LU.W 33 x 33 x 33 2.54 1.02 2.48

LU.A 64 x 64 x 64 2.13 0.68 3.13

LU.B 102 x 102 x 102 1.20 0.68 1.78

MG.S 32 x 32 x 32 2.35 1.26 1.86

MG.W 128 x 128 x 128 1.64 0.87 1.88

MG.A 256 x 256 x 256 1.67 0.73 2.29

MG.B 256 x 256 x 256 1.78 0.79 2.27

SP.S 12 x 12 x 12 3.00 1.55 1.94

SP.W 36 x 36 x 36 2.36 0.76 3.09

SP.A 64 x 64 x 64 1.46 0.70 2.08

SP.B 102 x 102 x 102 1.38 0.49 2.81

In-house 32x32x32 1.58 1.03 1.54

CFD code 1024x32x1024 1.42 0.54 2.64

GFLOPS

1.58 1.59
1.55 1.52 1.50

1.42

0.570.57

0.93
0.981.03

0.54

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

32x32x32 64x32x64 128x32x128 256x32x256 512x32x512 1024x32x1024

Domain size

G
F

L
O

P
S

Intel Core 2 Duo 3.0 GHz

AMD Opteron 2.4 GHz

Figure 8. GFLOPS performance of the serial CPU
version of our in-house developed CFD code with
increasing computational domain size.

American Institute of Aeronautics and Astronautics

12

this study can deliver a theoretical peak performance of 512 GFLOPS3. These two high performance computing
platforms with different GPU-CPU configurations were
used to perform speedup and multi-GPU scaling
analysis.

Using only a single CPU core, the serial CPU
version of our CFD code takes 82,930 seconds on the
Intel Core 2 Duo 3.0 GHz CPU and 218,580 seconds on
AMD Opteron 2.4 GHz CPU to simulate the lid-driven
cavity problem with a computational grid of
1024×32×102 for 10,000 time steps. The serial CPU
version of the CFD code runs faster on Intel Core 2 Duo
CPU than on AMD Opteron CPU because of its larger
L2 cache and its better clock frequency. On the other
hand the execution time for the GPU code is barely
dependent on the CPU clock speed. GPU performance
was nearly the same on both the Intel and AMD
platforms. As a result GPU performance relative to the
CPU performance is better for the AMD Opteron 2.4
GHz platform as shown in Fig. 9. On our Intel Core 2
Duo platform the GPU code performs 13 and 21 times
faster than the CPU code with one and two GPUs,
respectively. On the AMD Opteron 2.4 GHz platform
the GPU code performs 33, 53 and 100 times faster
using one, two and four GPUs respectively.
 Figure 10 shows computational speedup with respect
to different problem sizes. On the AMD Opteron
platform (Fig. 10a), depending on the problem size, the
quad-GPU performance varies from 10× to 100× relative to the serial CPU version of the CFD code. On the Intel
Core 2 Duo platform (Fig. 10b), the dual-GPU performance varies from 5× to 21×. The speedup numbers are
impressive for large problem size, because the arithmetic intensity on each GPU increases with problem size, and
the time spent on data communication with other GPUs compared to the time spent on computation becomes
relatively shorter. For small problems, a multi-GPU computation performs slower than the single-GPU computation.
On the AMD Opteron platform, for a problem of size 64×32×64, the dual-GPU solution performs slower than the
single-GPU, and the quad-GPU solution performs slower than the dual-GPU (Fig. 10a). As more GPUs are
available, the domain treated in the simulation should be larger to have each GPU working on large subdomain, and
hide the latency due to GPU data exchange. Based on our current implementation, tests have shown that
performance is better when there is a one-to-one matching between the number of GPUs and number of CPUs on
desktop platforms. For example, a dual-CPU platform coupled to the quad-GPU S870 server did not show any gain
in performance over a dual-CPU dual-GPU Tesla C870 platform. Note that this statement is dependent on our
implementation, and performance may be improved by overlapping communication with computation.

Figure 11 shows the multi-GPU performance scaling on the NVIDIA Tesla S870 server. The speedup results
shown in Fig. 9a are converted to scaling numbers. By increasing the problem size and adjusting the size of the data
to exchange between the GPUs, the performance on the quad-GPU platform is 3× the performance of a single GPU,
and the dual-GPU solution performs 1.6× faster than the single GPU. These performance numbers are less than the
ideal performance numbers of 4× and 2×, respectively. The bottleneck of the multi-GPU solution is the data
exchange between the GPUs, which requires synchronization and data transfer form the different GPUs to the host
and vice versa. Pinned memory (or page-locked memory) usage may reduce the time spent in exchanging data
between the host and the devices, leading to a better scaling in parallel multi-GPU computations.

VII. Conclusions

We have presented the implementation of Navier-Stokes equations for incompressible fluid flow on desktop

platforms with multi-GPUs. NVIDIA’s CUDA programming model is used to implement the discretized form of the
governing equations. The major steps of the projection algorithm are implemented with separate CUDA kernels, and
a unique implementation that exploits the memory hierarchy of the CUDA programming model is suggested.

13

21

33

53

100

N/A
0

20

40

60

80

100

120

1 2 4

Number of GPUs

S
p

ee
d

u
p

 (
x)

Intel Core 2 Duo Intel Core 2 Duo 3.0 GHz (dual core)

AMD Opteron AMD Opteron 2.4GHz (quad CPU)

Figure 9. GPU code speedup relative to the serial CPU
code for a domain of 1024×32×1024 computational
nodes. Quad-GPU results are currently not available
for the Intel Core 2 Duo platform, because we do not
have the hardware available for the present study.

American Institute of Aeronautics and Astronautics

13

Kernels for the velocity predictor step and the solution of the pressure Poisson equation were implemented using the
shared memory of the device, whereas a global memory implementation was pursued for the kernels that are
responsible to calculate the divergence field and velocity corrections and to apply the boundary conditions. This
unique combination resulted in factor of two speedup relative to global memory only implementation on the device.
To the best of our knowledge, our work is the first implementation of an incompressible flow Navier-Stokes solver
on multi-GPU desktop platforms.

Overall, we have accelerated the numerical solution of incompressible fluid flow equations by a factor of 100
using the NIVIDIA S870 Tesla server with quad GPUs. The speedup number is measured relative to the serial CPU
version of our CFD code that was executed using a single core of an AMD Opteron 2.4 GHz processor. With respect
to a single core of an Intel Core 2 Duo 3.0 GHz processor, we have achieved a speedup of 13 and 21 with single and
dual GPUs (NVIDIA Tesla C870), respectively. Same numerical methods were adopted in both the CPU and GPU
versions of the CFD code. We have observed that multi-GPU scaling and speedup results improve with increasing
computational problem size, suggesting that computationally “big” problems can be tackled with GPU clusters with
multi-GPUs in each node. We have also found that in a multi-GPU desktop platform, one CPU core should be
dedicated to each active GPU in order to obtain good scaling performance across multi-GPUs.

Our future work will focus on CUDA-specific optimization strategies and adding a complex geometry capability
to our multi-GPU parallel CFD code. We also plan to extend our code to address turbulent flow regimes.

a)

16 19

31 32 33

13

22

45
49

53

10

25

66

83

100

0

20

40

60

80

100

120

64x32x64 128x32x128 256x32x256 512x32x512 1024x32x1024

Domain size

S
p

ee
d

u
p

 (x
)

Single GPU

Dual GPU

Quad GPU

b)

8

15

18
19

21

13

10
11 12 12

10

5

-1

4

9

14

19

24

32x32x32 64x32x64 128x32x128 256x32x256 512x32x512 1024x32x1024

Domain size

S
p

ee
d

u
p

 (x
)

Single GPU

Dual GPU

 Figure 10. Single and multi-GPU speedup relative to a single CPU core. a) AMD Opteron 2.4GHz with
NVIDIA S870 Quad Tesla server b) Intel Core 2 Duo 3.0GHz with dual NVIDIA C870 Tesla boards.

American Institute of Aeronautics and Astronautics

14

Acknowledgments

The authors thank Drs. Massimiliano Fatica, Patrick Legresley, David Luebke from NVIDIA and Timothy J.
Barth from NASA Ames Research Center for helpful discussions on CUDA and GPU computing. Thanks are
extended to Marty Lukes and Luke Hindman of Boise State University for their help on building our desktop
supercomputer, and to NVIDIA Corporation and Micron Technology, Inc. for hardware donations. This work is
partially funded by NASA Idaho EPSCoR Research Initiation grant.

References

1Hennessy, J. L., Patterson, D. A., Goldberg, D. and Asanovic, K., Computer Architecture: A Quantitative Approach, 4th ed.,
Morgan Kaufmann, San Francisco, 2006.

2Owens, J., Luebke, D., Govindaraju, N., Harris, M., Kruger, J., Lefohn, A. and Purcell, T. “A Survey of General-Purpose
Computation on Graphics Hardware,” Computer Graphics Forum, Vol. 26, No.1, 2007, pp. 80-113.

3NVIDIA, “NVIDIA CUDA Compute Unified Device Architecture Programming Guide, Version 2.0,” 2008.
4Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E. and Phillips, J. C., “GPU Computing,” Proceedings of the

IEEE, Vol.96, IEEE Publishing, 2008, pp. 879-899.
5Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M. and Hanrahan, P., “Brook for GPUs: Stream

Computing on Graphics Hardware,” ACM Transactions on Graphics, Vol. 23, No.3, 2004, pp. 777-786.
6Stratton, J. A., Stone, S. S. and Wen-mei, W. H., “MCUDA: An Efficient Implementation of CUDA Kernels on Multi-

cores,” IMPACT Technical report, IMPACT-08-01, University of Illinois at Urbana-Champaign, March 12, 2008.
7Houston, M., “Stream Computing,” International Conference on Computer Graphics and Interactive Techniques, ACM

SIGGRAPH 2008 classes, article 15, ACM, New York, 2008.
8The MPI Forum, “The Message Passing Interface (MPI) Standard,” URL: http://www-unix.mcs.anl.gov/mpi/ [cited 29

December 2008]
9Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., and Menon, R., Parallel Programming in OpenMP, Morgan

Kaufmann, San Francisco, 2001.
10Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S., Kirk, D. B. and Wen-mei, W. H., “Optimization Principles and

Application Performance Evaluation of a Multithreaded GPU Using CUDA,” Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, ACM, New York, 2008, pp. 73-82.

11Harris, M. J., “Real-Time Cloud Simulation and Rendering,” Ph.D Dissertation, University of North Carolina, Chapel Hill,
NC, 2003.

12Stam, J. “Stable fluids,” Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques,
ACM Press/Addison-Wesley Publishing Co., New York, 1999, pp. 121-128.

13Liu, Y., Liu, X. and Wu, E., “Real-time 3D Fluid Simulation on GPU with Complex Obstacles,” Proceedings of the
Computer Graphics and Applications, 12th Pacific Conference, IEEE Computer Society, Washington, DC, 2004, pp. 247-256.

14Li, W., Fan, Z., Wei, X. and Kaufman, A., “GPU-Based Flow Simulation with Complex Boundaries,” GPU Gems 2,
Addison-Wesley, Boston, MA, 2005, pp. 747–764.

15Fan, Z., Qiu, F., Kaufman, A. and Yoakum-Stover, S., “GPU Cluster for High Performance Computing,” Proceedings of
the 2004 ACM/IEEE Conference on Supercomputing, IEEE Computer Society, Washington, DC, 2004, p. 47.

0.8

1.2
1.5 1.5 1.6

0.6

1.4

2.1

2.6

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

64x32x64 128x32x128 256x32x256 512x32x512 1024x32x1024

Domain size

S
p

ee
d

u
p

 o
ve

r
si

n
g

le
 G

P
U

 (
x)

Dual GPU

Quad GPU

Figure 11. Multi-GPU scaling on the S870 server with quad-CPU platform. As the problem
size increases the multi-GPU solutions scale better.

American Institute of Aeronautics and Astronautics

15

16Anderson, J., Lorenz, C. and Travesset, A., “General Purpose Molecular Dynamics Simulations Fully Implemented on
Graphics Processing Units,” Journal of Computational Physics, Vol. 227, No. 10, 2008, pp. 5342-5359.

17Liu, W., Schmidt, B., Voss, G. and Muller-Wittig, W., “Molecular Dynamics Simulations on Commodity GPUs with
CUDA,” Lecture Notes in Computer Science, High Performance Computing – HiPC 2007, Vol. 4873, Springer, New York,
2007, pp.185-196.

18Ufimtsev, I. and Martinez, T., “Quantum Chemistry on Graphical Processing Units. 1. Strategies for Two-electron Integral
Evaluation,” Journal of Chemical Theory and Computation, Vol. 4, No. 2, 2008, pp. 222-231.

19Schatz, M. C. and Trapnell, C. Delcher, A. L. and Varshney, A., “High-throughput Sequence Alignment using Graphics
Processing Units,” BMC Bioinformatics, BioMed Central, 2007.

20Barrachina, S., Castillo, M., Igual, F. D., Mayo, R. and Quintana-Orti, E. S., “Solving Dense Linear Systems on Graphics
Processors,” Technical Report ICC 02-02-2008, Universidad Jaume I, Depto. de Ingenieria y Ciencia de Computadores, February
2008.

21Castillo, M., Chan, E., Igual, F. D., Mayo, R., Quintana-Orti, E.S., Quintana-Orti, G., van de Geijn, R. and Van Zee, F.G.
“Making Programming Synonymous with Programming for Linear Algebra Libraries”, Technical Report, University of Texas at
Austin, Department of Computer Science, Vol. 31, April 17, 2008, pp. 8-20.

22Michalakes, J. and Vachharajani, M., “GPU Acceleration of Numerical Weather Prediction,” Proceedings of the IEEE
International Symposium on Parallel and Distributed Processing, IEEE Computer Society, Washington, DC, 2008.

23Bleiweiss, A., “GPU Accelerated Pathfinding,” Proceedings of the 23rd ACM SIGGRAPH/Eurographics Symposium on
Graphics Hardware, Eurographics Association, Aire-la-Ville, Switzerland, 2008, pp. 65-74.

24Tolke, J. and Krafczyk, M., “TeraFLOP Computing on a Desktop PC with GPUs for 3D CFD,” International Journal of
Computational Fluid Dynamics, Vol. 22, No. 7, 2008, pp. 443-456.

25Brandvik, T. and Pullan, G., “Acceleration of a 3D Euler Solver Using Commodity Graphics Hardware,” 46th AIAA
Aerospace Sciences Meeting and Exhibit, 2008.

26Molemaker, J., Cohen, J. M., Patel, S. and Noh, J., “Low Viscosity Flow Simulations for Animation,” Eurographics/ACM
SIGGRAPH Symposium on Computer Animation, Eurographics Association, Aire-la-Ville, Switzerland, 2008.

27NVIDIA, “CUDA Zone, the resource for CUDA developers,” URL: http://www.nvidia.com/object/cuda_home.html [cited
29 December 2008]

28Ghia, U., Ghia, K. N. and Shin, C. T., “High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and
a Multigrid Method,” Journal of Computational Physics, Vol. 48, 1982, pp. 387-411.

29Ferziger, J. H. and Peric, M., Computational Methods for Fluid Dynamics, Springer, New York, 2002.
30Chorin, A. J. “Numerical Solution of the Navier-Stokes equations,” Mathematics of Computation, Vol. 22, No. 104, 1968,

pp. 745-762.
31 Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D.S., Carter, R. L., Dagum, L., Fatoohi, R. A., Frederickson, P. O.

Lasinski, T. A., Schreiber, R. S., “The NAS Parallel Benchmarks,” International Journal of High Performance Computing
Applications, Vol. 5, No. 3, 1991, pp. 63-73.

32GCC, GNU Compiler Collection, Ver. 4.1.2, Sept. 2007, URL: http://gcc.gnu.org [cited 29 December 2008]

	Boise State University
	ScholarWorks
	1-1-2009

	CUDA Implementation of a Navier-Stokes Solver on Multi-GPU Desktop Platforms for Incompressible Flows
	Julien C. Thibault
	Inanc Senocak

	CUDA Implementation of a Navier-Stokes Solver on Multi-GPU Desktop Platforms for Incompressible Flows

