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Bayesian Wavelet-Based Methods for the Detection
of Multiple Changes of the Long Memory Parameter

Kyungduk Ko and Marina Vannucci

Abstract—Long memory processes are widely used in many sci-
entific fields, such as economics, physics, and engineering. Change
point detection problems have received considerable attention
in the literature because of their wide range of possible appli-
cations. Here we describe a wavelet-based Bayesian procedure
for the estimation and location of multiple change points in the
long memory parameter of Gaussian autoregressive fractionally
integrated moving average models (ARFIMA( )), with
unknown autoregressive and moving average parameters. Our
methodology allows the number of change points to be unknown.
The reversible jump Markov chain Monte Carlo algorithm is used
for posterior inference. The method also produces estimates of all
model parameters. Performances are evaluated on simulated data
and on the benchmark Nile river dataset.

Index Terms—ARFIMA models, Bayesian inference, change
point, reversible jump, wavelets.

I. INTRODUCTION

LONG memory processes have been widely used in many
fields, such as economics, finance, and telecommunica-

tions, to cite a few, to model characteristic phenomena. Data
from long memory processes have the distinctive feature that
dependencies between distant observations are not negligible.
Common models for long memory behavior are the fractional
Brownian motion and fractional Gaussian noise. Discrete-time
long memory processes are the autoregressive, fractionally inte-
grated, moving average models with fractional differencing pa-
rameter , or ARFIMA , first introduced by Granger and
Joyeaux [9] and Hosking [11]. For these models the value of the
spectral density function goes to infinity as the frequency goes to
zero, and classical time series methods for estimation and testing
cannot be applied. Also, the full structure of the variance-covari-
ance matrix makes inferential methods computationally expen-
sive. In early stages, approximate maximum likelihood methods
were used by Li and McLeod [17] and Fox and Taqqu [6].
Sowell [26] calculated the exact covariance matrix to compute
the likelihood function under the assumption that the roots of
the autoregressive polynomial are simple. Beran [1] investigated
asymptotic sampling theory properties of exact and approximate
maximum likelihood methods. As for Bayesian approaches, Pai
and Ravishanker [21], [22] adopted the Metropolis algorithm
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to estimate the model parameters, Koop et al. [16] used im-
portance sampling with the exact form of the variance-covari-
ance matrix of Sowell [26], and Ko and Vannucci [15] proposed
wavelet-based estimation procedures. Also, Jensen [14] investi-
gated Bayesian estimators of the long memory parameter in the
context of stochastic volatility models.

While estimation of model parameters has been widely
investigated, less work has been done in designing methods
for change point analysis of the long memory parameter in
ARFIMA models. Change points in a given series
result from unexpected changes in the physical process that
generates the data. Estimation techniques for model parame-
ters may be inaccurate when change points are not properly
located. Beran and Terrin [2] proposed a test for detecting
a single change in ARFIMA models. Ray and Tsay
[25] investigated Bayesian estimation procedures for multiple
change points analysis of the mean level and the long memory
parameter. They considered ARFIMA models only and
used a time-dependent Kalman filter approach with a truncated
moving average (MA) approximation to evaluate the likelihood.
Their method allows accurate estimation only if the change
points occur at the ends of prespecified data blocks. Moreover,
they used a griddy Gibbs sampler algorithm to estimate the
long memory parameter, a procedure that can lead to inaccurate
estimates. Liu and Kao [18] also adopted griddy Gibbs sampler
estimation algorithm but allowed the number of change points
to vary with the other model parameters and used the reversible
jump Markov chain Monte Carlo (MCMC) method of Green
[10] for inference. These authors considered the special case
of ARFIMA models with conditionally heteroscedastic
GARCH(1, 1) innovations.

Here we propose a wavelet-based Bayesian method for the
detection of multiple change points of the long memory param-
eter for ARFIMA models. Wavelets, being self-similar,
have a strong connection with long memory processes and have
been previously employed in the estimation of time-varying
long memory parameters; see Whitcher and Jensen [31] and
Wang et al. [30]. We use discrete wavelet transform (DWT)
as a tool to get a sparse form of the covariance matrix, there-
fore simplifying the calculation of the likelihood. Following
Liu and Kao [18], we allow an unknown number of change
points and implement a reversible jump MCMC algorithm to
carry out posterior inference in the wavelet domain. We deal
with general types of ARFIMA models and design a
Metropolis algorithm to sample the long memory parameters
and the model parameters. Our method combines existing
tools, such as DWT and reversible jump MCMC, in a novel
manner to produce estimates of the number and locations of
multiple change points. It also provides posterior estimates
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of the long memory parameters as well as the autoregressive
(AR) and MA parameters. Results from Vannucci and Corradi
[29] allow us to use the exact form of the variance-covariance
matrix of ARFIMA models instead of approximated formulas
as frequently done in wavelet-based estimation of long-memory
processes. The reversible jump MCMC method we implement
for posterior inference is largely similar to the one adopted by
Liu and Kao [18]. However, unlike ours, their method is not
wavelet-based.

This paper is organized as follows. Section II provides a brief
introduction to ARFIMA models and to discrete wavelet trans-
formations. Section III describes the change point model and
the prior distributions. We also report there the derivations of
the posterior distributions necessary for our inferential strategy.
Section IV introduces the reversible jump MCMC procedure.
Mathematical derivations of posterior and proposal ratios are
reported in the Appendix . Section V describes the simulation
study and the results on the Nile River dataset. Section VI pro-
vides some concluding remarks.

II. PRELIMINARIES

A. ARFIMA Processes

A long memory process is characterized by the slow decay in
the autocovariance function of the type , where

is a constant depending on the process, , and
is large. Fractional ARIMA or ARFIMA , first

introduced by Hosking [11] and Granger and Joyeux [9], are
well-known examples of long memory processes. Let us first
define the fractional difference operator (1 ) , where
( 0.5,0.5), as the binomial series expansion

(1)

where is the backshift operator and where the coefficients are
square summable

(2)

Here denotes the gamma function, which is defined as
for , as for

, and as for ; see Brockwell
and Davis [3]. For nonnegative integers and , a fractional
ARIMA process is defined by the stationary solution
of the equation

(3)

where

and is a Gaussian white noise process with zero mean and
variance . Here we assume a finite mean , that is

without loss of generality. Differencing times the process pro-
duces an ARMA model. Fractional ARIMA processes are
stationary and invertible for . They exhibit positive de-
pendency between distant observations for (long
memory) and negative dependency for (interme-
diate memory), and reduce to short memory ARMA pro-
cesses for . A special class is given by the fractionally
integrated processes obtained for and , also called
fractionally differenced white noise, or , in that differencing

times produces a white noise process.

B. Discrete Wavelet Transforms

Suppose we observe a time series as a realization of a random
process and let us indicate the data vector as
with and a positive integer1 denoting the scale of the
data. A discrete wavelet transform [19] can be used to reduce
the data to a set of wavelet coefficients. Although it operates via
recursive applications of filters, for practical purposes a DWT of
order is often represented in matrix form as , with

an orthogonal matrix of the form

(4)

that decomposes the data into sets of coefficients

(5)

where is of dimension ,
with , is of dimension 2 , and

. Coefficients are scaling coeffi-
cients representing a coarser approximation of the data, while
coefficients are wavelet coefficients representing
local features of the data at different resolution scales. An
inverse transformation exists to reconstruct a set of data from
its wavelet decomposition.

III. BAYESIAN CHANGE POINT ANALYSIS

A. The Model

We want to allow the long memory parameter in
(3) to change over time. Ray and Tsay [25] investigated
models that allow random shifts of this parameter as

, where the s are inde-
pendent and identically distributed Bernoulli random variables
and s are random observations with known distribution. In
their implementation the authors allowed shifts to occur only at
time points with prespecified.
Here we adopt a more flexible model that uses a latent discrete
state variable to indicate the different states (or “regimes”)
induced by the change points. This model has a simple and easy
interpretation and it has become very popular in the change
point literature; see, for example, [4] and references therein.
According to this model, we have

1Using 2 points, with J integer, is not a real restriction and methods exist to
overcome the limitation allowing wavelet transforms to be applied to any length
of data.
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where

if
if

...
...
if

with and , the maximum number of changes
of the long memory parameter, to be prespecified. The elements
of the vector indicate the positions at which
changes in the long memory parameter occur and those of

the values of the long memory parameter in
the corresponding sub-intervals.

B. Likelihood

We model wavelet coefficients, rather than the original
data. The DWT is a linear and orthogonal transformation,
and wavelet coefficients therefore inherit the distribution
of the data—specifically, they are zero-mean Gaussian. Let

. We write the likelihood function in the wavelet
domain as

(6)

where is the th component of the vector of the wavelet co-
efficients. We compute the exact variances of the wavelet
coefficients via a recursive algorithm that uses the DWT filters
[29, Prop. 1, p. 974]. The algorithm has an interesting link to
the two-dimensional discrete wavelet transform (DWT2) that
makes computations simple. In the context of this paper, the
variances can be computed as the diagonal elements of the
matrix that results from applying the DWT2 to the theoretical
variance–covariance matrix whose element values can be cal-
culated based on the specific model under consideration and the
values of the model parameters.

We use the following argument in order to line the wavelet
coefficients up in time with their location in the original data
domain; see, for example, Percival and Walden [24, p. 13], and
Wang et al. [30]. There are wavelet coefficients at scale

of the DWT and they correspond to the times
2 2 , . We therefore line up all

wavelet coefficients accordingly and use the reordered vector
in the implementation of the MCMC procedure later described.
Hereafter we assume that in (6) is the
vector of lined up wavelet coefficients.

The advantage of using wavelets in our context is that the
DWT serves as a tool to simplify the likelihood. Long memory
data have, in fact, a dense covariance structure that makes the
exact likelihood of the data difficult to handle; see, for example,
Beran [1]. Simpler models, instead, can be used for wavelet
coefficients. Decorrelation properties of the wavelets for long
memory processes are, in fact, well documented in the litera-
ture. Tewfik and Kim [27] proved that the correlation between
wavelet coefficients decreases exponentially fast across scales
and hyperbolically fast along time. Jensen [12], [13] provides
evidence that these rates of decay allow the DWTs to do a cred-
ible job at decorrelating the highly autocorrelated long memory
processes. In addition, wavelets have an adaptive behavior in

the time domain in that the time support of the wavelet coeffi-
cients at high scales is smaller than the time support of those at
lower scales. This makes wavelets well suitable for estimating
time-varying parameters.

We want to emphasize that wavelet transforms do not decor-
relate long memory data exactly and that (6) is indeed an ap-
proximate model. For further investigation, we looked into em-
pirical measures of this approximation. We essentially applied
the inverse of the Vannucci and Corradi algorithm to the vari-
ances of the wavelet coefficients only, i.e., to a diagonal ma-
trix, therefore reconstructing an approximate covariance matrix
in the data domain, and then computed reconstruction errors
as mean squares ( ) and mean absolute deviations ( ) be-
tween the original and the reconstructed covariance matrices.
These errors were typically very small. For example, we got

and for the mean absolute de-
viations and mean squares, respectively, for ARFIMA
with , , , and and

for , , . We obtained
similar results for different values of the parameters ( ).
Overall, reconstructions from diagonal structures in the wavelet
domain are reasonably close to the original ones, the only excep-
tions being extreme cases where is close to 0.5 and the MA
and AR parameters are close to the unitary root. These argu-
ments provide further evidence for the whitening properties of
the wavelets, suggesting that the approximation to uncorrelated
coefficients can be reasonable, especially when considering the
computational advantage implied by such approximation. Other
evidence can be found in the fairly good detection performance
of our method (see the applications section). These arguments,
of course, strictly depend on the long memory structure and do
not apply to other processes. Percival et al. [23] and Gabbanini
et al. [7] have looked at wavelet packets as a way to decorrelate
processes for which the standard DWTs fail, such as for short
memory processes.

C. Prior Distributions

We specify priors for the unknowns, i.e., the vectors and
, the autoregressive coefficients , the

moving average coefficients , the param-
eter , and the error variance . Let

, where . We assume

We use uniform distributions over the set (0, 0.5) as the priors
for , , and uniform priors for the s and s
defined in the ranges that satisfy the causality and invertibility
properties of the ARMA process. We also specify a uniform
distribution over the set of integers for the
prior on . As for the prior distribution of , suppose that
is generated at a particular iteration from .
Then the number of possible ways we can pick change points
out of 2 candidate locations is . A reasonable choice
for a prior distribution is therefore

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 16:45 from IEEE Xplore.  Restrictions apply.



4464 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 11, NOVEMBER 2006

which is noninformative. All the above priors are proper. We set
an improper prior on as .

D. Posterior Distributions

Given the likelihood (6) and the priors as described in
Section III-C, the joint posterior distribution of all parameters
given the data can be expressed as

We treat as a nuisance parameter and integrate it out to get a
proper marginal posterior distribution of , , and as

In order to implement our MCMC estimation procedure,
we need the following full conditional distributions. Suppose
we set the maximum number of change points to , so that

. The conditional
posterior distribution of a change point is

(7)

where , ,
, and . This conditional distribution is

used to update the change points.
The conditional joint posterior distribution of

is

(8)

This conditional distribution is used to implement a reversible
jump MCMC procedure with an embedded Metropolis step as
described in the next section.

IV. REVERSIBLE JUMP MCMC

For inference, we adopt a reversible jump Markov chain
Monte Carlo method, Green [10]. Reversible jump MCMC
is a generalization of the Metropolis–Hastings algorithm to
cases where model parameters have variable dimensions. In our
model, the number of change points is not fixed a priori ,and
therefore the dimension of the parameter space
changes at each MCMC iteration. At each step the update
of the model dimension and model parameters is carried out
by computing an acceptance probability designed to ensure
a detailed balance equation, which in turn allow the Markov
chain to have a specified invariant distribution.

In this paper, the algorithm randomly evolves by choosing
at each iteration one of three move steps, according to pre-
specified probabilities: birth of a change point ,

death of a change point , and transition of
, where . The three types of moves we use

are as follows.
i) Birth of a change point: The birth step adds a new change

point to the current parameter state , where
, that is, the number of change

points increases from to 1. Let the locations of
the ( 1) change points be
and the corresponding long memory parameters be

. Then the proposed pa-
rameter space becomes , where

. We accept a proposed tran-
sition from to with probability shown in (9) at
the bottom of the next page. See the Appendix for the
derivation of this acceptance probability.

ii) Death of a change point: The death step drops one point
among the existing change points, that is, the number
of change points decreases from to 1. Let the pro-
posed locations with change points be

and the corresponding long memory
parameters be . The resulting pa-
rameter space is , where

. We accept a transition from to
with probability shown in (10) at the bottom of the

next page. See the Appendix for more details.
iii) Transition of the model parameters :

For the transition step, we update the model parameters
by sampling from the conditional distribution (7)
and from the joint (8). For the latter we use a
Metropolis algorithm with a multivariate normal distri-
bution as proposal distribution, centered at the maximum
likelihood estimates of the parameters and with covari-
ance matrix given by the observed Fisher information.
We use rejection sampling to take into account the re-
strictions on the values of the parameters.

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 16:45 from IEEE Xplore.  Restrictions apply.
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In the design and implementation of the birth and death moves,
we largely followed the work of Liu and Kao [18]. We re-
port in the Appendix the necessary calculations to derive
the acceptance probabilities of the two moves for our par-
ticular case. Also, following Green [10], we want to ensure

so that

where the constant is as large as possible subject to
for all . Since in our prior setting

for , , , and
can be set to 0.45. Therefore, we set up each probability

as shown in the equation at the bottom of the page and use these
probabilities to choose one of the three moves at each MCMC
iteration.

V. APPLICATIONS

A. Simulation Study

There are a number of ways to generate a time series
that exhibits long memory properties. A computationally
simple one was proposed by McLeod and Hipel [20] and
involves the Cholesky decomposition of the correlation matrix

. Given with a
lower triangular matrix, if , is a Gaussian white
noise series with zero mean and unit variance, then the series

(11)

will have autocorrelation . We used the McLeod and Hipel
method to simulate data with computed as in Sowell [26].
We set and sample size .

posterior ratio proposal ratio

(9)

posterior ratio proposal ratio

(10)

and if
and if

and if
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We looked at both single and multiple change points. For
the single change point case, we simulated datasets with
a change at . For multiple changes, we induced
changes at and . We simulated data from
ARFIMA , ARFIMA , and ARFIMA
models with one change point and from ARFIMA with
two change points. We used , ,
and . In all analyses we used
discrete wavelet transforms with Daubechies’s minimum phase
wavelets with seven vanishing moments [5].

We set the initial value for the number of change points to
zero and the maximum number of change points allowed
to three. For MCMC sampling, we used maximum likelihood
estimates as initial values for , , and and the inverse of
Fisher’s information matrix as the variance–covariance ma-
trix of the multivariate normal proposal distribution for the
Metropolis step. We used 20 000 iterations with a burn-in of
10 000. At each iteration, a move type is randomly chosen
among moves i)–iii), as described in Section IV, and the values
of new parameters are obtained according to the chosen move
type. When sampling from (7), only the s that changed
during the reversible jump step are recalculated and standard-
ized so to sum up to one. Then only one point among the
candidate points is sampled from a multinomial distribution
with the standardized values as multinomial probabilities and
passed to the next step.

We assessed convergence by looking at plots of the auto-
correlation functions of the sampled parameters. Figs. 1 and
2 show these plots for two of the models we simulated. We
also computed Geweke’s -score as the standardized dif-
ference between the initial and final portions of the MCMC
chains. According to Geweke [8], the statistic is distributed
as a standard Gaussian if the chain has reached con-
vergence. Therefore, values that are less than approximately 3
for all parameters indicate convergence. Values for our chains
are reported in Tables II–V, together with the estimates of the
parameters. Correlation plots and values for all simulated
cases were consistent with convergence to the stationary distri-
bution. In particular, values in our results are all smaller than
2.42 and therefore are consistent with convergence of the chains
( ).

The MCMC algorithm produces a sample on all parameters,
from which the number of change points can be estimated
first, as the posterior mode, denoted . Inference on the model
parameters is then obtained conditionally on . Table I, second
column, shows the estimates of the number of change points
for an ARFIMA with and and one
change point in the long memory parameter at with

and . Table II reports the posterior estimates
and posterior confidence intervals for the model parameters and
change points corresponding to , the most probable value
from Table I. Table I, third column, and Table III show results for
ARFIMA with , , , and one
change point at . Table I, fourth column, and Table IV
are for an ARFIMA with , , ,
and one change point at . Finally, Table I, fifth column,
and Table V refer to an ARFIMA with ,

Fig. 1. ARFIMA(0; d; 1): Autocorrelation functions of sampled parameters.

Fig. 2. ARFIMA(1; d; 1) with two change points: Autocorrelation functions
of sampled parameters.

and two change points, at and with
, , and .

Results are overall encouraging. The number of change
points is correctly estimated in all cases considered. The
method also shows good performance in the estimation of the
model parameters and in the location of the change points,
although there appears to be a slight overestimation of the
location for ARFIMA with one change point and for
the multiple change point case.

Finally, we tested the performance of the method in the case
of a long memory model with a constant by simulating data
from an ARFIMA with and no change point.
Our method correctly estimated .

B. Nile River Dataset

Probably the most well known example of a time series that
exhibits long memory behavior is the Nile River minimum
water levels dataset [28]. This time series consists of 663 yearly
values, from A.D. 622 to A.D. 1284; see Fig. 3. Beran [1, p.
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TABLE I
ARFIMA(1; d; 1), ARFIMA(1; d; 0), ARFIMA(0; d; 1) AND ARFIMA(1; d; 1) (SEE TEXT FOR PARAMETER VALUES): POSTERIOR ESTIMATES OF THE

NUMBER OF CHANGE POINTS k

TABLE II
ARFIMA(1; d; 1) WITH � = 0:1, d = 0:2, d = 0:4, � = 0:5 AND ONE

CHANGE POINT AT c = 257: PARAMETER ESTIMATES FOR k̂ = 1, TOGETHER

WITH GEWEKE’S MEASURE FOR CONVERGENCE DIAGNOSTIC

TABLE III
ARFIMA(1; d; 0) WITH � = 0:3, d = 0:2, d = 0:3, AND ONE CHANGE

POINT AT c = 257: PARAMETER ESTIMATES FOR k̂ = 1, TOGETHER WITH

GEWEKE’S MEASURE

117–118] showed that the data can be modeled as fractionally
differenced process and obtained an estimate of
using Whittle’s approximate maximum likelihood approach.
However, he suspected a change of the long memory parameter
in the time series. Looking at the plot of the data, he noticed
that the first part of the series seemed to fluctuate much more
independently than the subsequent measurements. Beran and
Terrin [2] tested this hypothesis by segmenting the time series
into six consecutive disjoint sets of observations of length
100 and estimating on each set. Their estimated values of
were 0.0433 for the first 100 years and 0.3531, 0.3652, 0.3281,
0.3435, and 0.4354 for the subsequent sets. Ray and Tsay [25]
reported an estimate of for the first 100 years and of

afterward. These results were all obtained by testing
for change points at prespecified locations.

We used the Nile River yearly minima from A.D. 622 to A.D.
1134 ( ). Data are displayed in plot Fig. 3(a). We fitted
an ARFIMA model, allowing the number of change
points and locations to be unknown. Posterior estimates for
were (0.3218, 0.3917, 0.1923, 0.0942) for respec-
tively. The posterior mode was therefore at , suggesting
the existence of one change point in the data. Table VI reports
the estimates of the model parameters and of the location of the
change point for . Our method puts the change at the year
A.D. 726, slightly later than suggested by Beran and Terrin [2].
Our estimates of the long memory parameter before and after

TABLE IV
ARFIMA(0; d; 1) WITH � = 0:3, d = 0:2, d = 0:3, AND ONE CHANGE

POINT AT c = 257: PARAMETER ESTIMATES FOR k̂ = 1, TOGETHER WITH

GEWEKE’S MEASURE

TABLE V
ARFIMA(1; d; 1) WITH � = 0:1, � = 0:4, d = 0:45, d = 0:35,
d = 0:05, AND TWO CHANGE POINTS AT c = 129 AND c = 257:

PARAMETER ESTIMATES FOR k̂ = 2, TOGETHER WITH GEWEKE’S MEASURE

the estimated change point are and ,
respectively. Our estimate of for was , i.e.,
a value close to Beran and Terrin’s estimate of 0.40 under the
assumption that there is no change point. This value is also very
close to the average estimate, 0.3651, for the five consecutive
disjoint segments after the first 100 years, as found by Beran
and Terrin [2].

Bayesian analysis allows inference on model parameters
via full posterior distributions. Our inference is summarized
in Fig. 3(b) and (c), where kernel estimates of the posterior
densities of before and after A.D. 726, the estimated change
point, are shown, respectively. Fig. 3(d) shows the trace of
the location of the change point. Fig. 4 shows plots of the
autocorrelation functions for the sampled parameters. Values
of Geweke’s statistic are reported in Table VI and are
consistent with convergence to the stationary distribution.

When setting the prior on the long memory parameter
, we have restricted ourselves to the long memory range

given by the interval (0, 0.5). This may result in an over-
estimate of the parameter when is close to zero. Upon
suggestion from one of the referees, we reran this application
with a uniform prior on the interval ( 0.5, 0.5). Our method
still favored one change point, although the estimate of
was . Estimates of the other
model parameters were very close to those reported in Table VI.
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Fig. 3. Nile River data: (a) Original data and kernel estimates of the posterior
density of d (b) before A.D. 726 and (c) after A.D. 726. (d) shows the MCMC
trace of the location of the change point.

TABLE VI
NILE RIVER DATASET: ESTIMATES OF THE ARFIMA(0; d; 0) MODEL

PARAMETERS AND CHANGE POINT c FOR k̂ = 1, TOGETHER WITH GEWEKE’S

MEASURE

VI. CONCLUDING REMARKS

We have proposed a wavelet-based Bayesian method for the
detection of multiple change points of the long memory param-
eter for ARFIMA models. We have allowed an unknown
number of change points and have implemented a reversible
jump MCMC algorithm to carry out posterior inference in the
wavelet domain. Our method combines existing tools, such as
DWT and reversible jump MCMC, in a novel manner to pro-
duce estimates of the number and locations of multiple change
points in the long memory parameter. It also provides posterior
estimates of the long memory parameters as well as the AR and
MA parameters.

In the simulation study, we have used Daubechies wavelets
with seven vanishing moments. In our previous work we found
that wavelets with high degrees of regularity produce slightly
better estimates of the long memory parameter for large sample
sizes [15]. Wavelets with higher numbers of vanishing moments
ensure wavelet coefficients approximately uncorrelated. On the
other hand, the support of the wavelets increases with the reg-
ularity and boundary effects may arise in the DWT, so that a
tradeoff is often necessary.

For inference we have mainly focused on the long memory
parameter and the autoregressive and moving average parame-
ters. Our inferential procedure, however, could be generalized
to include inference on other model parameters, such as the
noise variance and the process mean, either by implementing a
full Gibbs or by using a Rao–Blackwellization procedure. This

Fig. 4. Nile River data: Autocorrelation functions of sampled parameters.

would also make the investigation of prediction performances of
the estimated models possible, for example, by approximating
the predictive distribution via Monte Carlo integration using the
output from the MCMC sampler; see, for example, Pai and Rav-
ishanker [21], [22]. This is currently under investigation. Fi-
nally, while our method has focused on changes in the long
memory parameter only, extensions may be possible that in-
clude changes in the model parameters.

APPENDIX

BIRTH AND DEATH MOVES FOR REVERSIBLE JUMP MCMC

A. Birth of a Change Point

The birth step adds a new change point to the current param-
eter state , that is, the number of change points in-
creases from to 1. Two uniform random variables and
are generated to match the dimension of the parameters such that

, where
is the set of existing change points and ,
with and

.
Let the locations of the ( 1) change points be

and the corresponding long memory param-
eters be , where

if
if
if

if
if
if
if .

The proposed parameter space becomes ,
where . Let
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. The Jacobian for the acceptance probability for
birth step is

The posterior ratio is shown in the first equation at the bottom
of the page. The proposal ratio can be written as

proposal ratio

The denominator in the above formula comes from the fact that
when a transition is made from to , there are three com-
ponents that need to be computed: the probability of a birth ,
the probability that we choose one candidate point for a birth
among the ( 2) points, and the probability to split the
long memory parameter into two. The numerator consists of the
probability of a death and the probability of dropping one
point among the existing ( 1) points.

The acceptance rate for the birth of a change point is the
product of the above three components: the posterior ratio, the
proposal ratio, and the Jacobian. This completes our derivation
of (9).

B. Death of a Change Point

The death step drops one point among the existing change
points, that is, the number of change points decreases from to

1. A uniform random variable is generated to match the
dimension of the parameters in the range . Let
the proposed locations with change points be

and the corresponding long memory param-
eters be , where

if
if

if
if
if .

The resulting parameter space is ,
where . Let

. Then the Jacobian for the acceptance
probability is

The posterior ratio is shown in the last equation at the bottom of
the page. The proposal ratio can be written as

proposal ratio

where .
The acceptance rate for the death of one of the existing change

points is the product of the above three components: the poste-
rior ratio, the proposal ratio, and the Jacobian. This completes
our derivation of (10).
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