
Boise State University
ScholarWorks

Computer Science Graduate Projects and Theses Department of Computer Science

12-1-2012

Object Oriented Implementation of the Parallel
Toolkit Library
Sandhya Vinnakota
Boise State University

http://scholarworks.boisestate.edu
http://scholarworks.boisestate.edu/cs_gradproj
http://scholarworks.boisestate.edu/cs

OBJECT ORIENTED IMPLEMENTATION

OF

THE PARALLEL TOOLKIT LIBRARY

by

Sandhya Vinnakota

A project

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

December 2012

c© 2012
Sandhya Vinnakota

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the project submitted by

Sandhya Vinnakota

Project Title: Object Oriented Implementation of the Parallel Toolkit Library

Date of Final Oral Examination: 12 December 2012

The following individuals read and discussed the project submitted by student Sand-
hya Vinnakota, and they evaluated their presentation and response to questions
during the final oral examination. They found that the student passed the final
oral examination.

Amit Jain, Ph.D. Chair, Supervisory Committee

Jim Buffenbarger, Ph.D. Member, Supervisory Committee

Jyh-haw Yeh, Ph.D. Member, Supervisory Committee

The final reading approval of the project was granted by Amit Jain, Ph.D., Chair,
Supervisory Committee. The project was approved for the Graduate College by John
R. Pelton, Ph.D., Dean of the Graduate College.

ACKNOWLEDGMENTS

I would like to express gratitude to a lot of people for support during this work. I

would like to especially thank my husband and my son Vibodh Ayyapureddi without

whose support I would not have finished this project. I also thank my parents for

their support and sacrifice .

I would also like to thank my advisor Dr Amit Jain for his wonderful support and

patience throughout the project.

iv

ABSTRACT

With manufacturing efficiencies and technological innovation the computing power

of commodity machines has been increasing accompanied by decreasing costs. With

the very favorable price/performance ratio the computing community has shifted from

monolithic machines to networked machines.

This has created the need for software to manage the parallelism of the net-

work. One such work has been the Parallel Toolkit Library. The Parallel Toolkit

Library provides support for common design functionalities used throughout parallel

programs.

This work extends the PTK C library for C++ parallel programs. The motivation

for the current project stems from the need to let parallel programs reap the benefits

of a library with an object oriented programming approach. This also fits well with

the introduction of C++ bindings in MPI. The library has been structured on object-

oriented concepts. The functionality of the PTK-C has been encapsulated into various

classes. Individual functionalities have also been split into multiple classes leading to

modularity and reusability of code.

Template programming has been used to ensure type safety. The testing results

are consistent with expectations in that the PTK-C++ is very much comparable to

the PTK-C in terms of performance. In most cases, it would be more efficient to use

the toolkit than to rewrite the code to recreate the efficiencies already present in the

library.

v

TABLE OF CONTENTS

ABSTRACT . v

LIST OF TABLES . ix

LIST OF FIGURES . x

1 Introduction . 1

1.1 Problem Statement . 1

1.2 Prior Work . 1

1.2.1 Existing work in object-oriented PTK like libraries 1

1.3 Parallel functionality implemented . 2

2 The Tool Kit Implementation . 4

2.1 Introduction . 4

2.1.1 Template Programming . 4

2.1.2 Exception Handling . 4

2.1.3 Memory Handling . 5

2.1.4 Namespace . 5

2.2 Implementation Discussion . 6

2.2.1 Init . 6

2.2.2 CommonVarHelper . 6

2.2.3 Exit . 6

vi

2.2.4 Workpool . 7

2.2.5 WorkpoolUserInterface . 7

2.2.6 DistributedWorkpool . 8

2.2.7 SendSets . 9

2.2.8 SendTaskSets . 9

2.2.9 SendResultSets . 9

2.2.10 WorkpoolData . 9

2.2.11 DualPassTokenRing . 10

2.2.12 CentralizedWorkpool . 11

2.2.13 Scatter1d . 11

2.2.14 Scatter2d . 12

2.2.15 Gather1d . 12

2.2.16 Gather2d . 12

2.2.17 AllToAll1d . 13

2.2.18 AllToAll2d . 13

2.2.19 Multicast . 14

2.2.20 Filemerge . 14

3 Using The Toolkit: Examples . 15

3.1 Example using the ShortestPathCentralWorkpool 16

3.2 Example using the ShortestPathDistributedWorkpool 19

4 Testing and Benchmarking . 22

4.1 Testing coverage of toolkit classes . 22

4.2 Graphs comparing the performance of C vs C++ 23

4.3 Simulation notes . 26

vii

5 Conclusions . 27

5.1 What have we done so far? . 27

5.2 Design Patterns . 28

5.3 What have we learned . 28

5.4 Potential Future work . 28

5.4.1 Complex Datatypes . 28

5.4.2 Multi-threading . 29

REFERENCES . 30

A MPI Datatypes . 31

B Installing the PTK Library . 32

viii

LIST OF TABLES

3.1 PTK examples and corresponding classes (Part 1) 15

3.2 PTK examples and corresponding classes (Part 2) 16

4.1 Testing coverage of toolkit classes (Part 1) . 22

4.2 Testing coverage of toolkit classes(Part 2) . 23

ix

LIST OF FIGURES

2.1 Diagram depicting the relationship between the workpool classes 7

4.1 C versus C++:Shortest Path Central (Simple) - with granularity = 1.

Vertices in K‘s . 23

4.2 C versus C++:Shortest Path Central:Granularity=200, Vertices per

task=100 . 24

4.3 C versus C++:Shortest Path Distributed (Simple) - with granularity

= 1 . 25

4.4 C versus C++:Shortest Path Distributed:More Efficient,Granularity=200 26

x

1

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

With the introduction of the C++ bindings in Message Passing Interface(MPI)-2,

and the existing Parallel Tool Kit(PTK) library being implemented in C, there was

a need for C++ version of the PTK. This project addresses that need by converting

the PTK-C library to PTK-C++.

As this work is an extension of the PTK [1], the scope of the project will be limited

by the work done in original PTK C-library [1].

1.2 Prior Work

1.2.1 Existing work in object-oriented PTK like libraries

The most recent work is the work carried out in [1], which implemented the PTK

library in C.

A rigorous literature search has failed to unearth any progressive work being done

in the area of work pool management for parallel programs. The literature survey is

consistently pointing to the work carried out by Sachs and McGough [3]. There is no

code or any additional documentation available for [3].

2

The literature survey has indicated that the most pertinent body of work at

present is the MPI Boost Library [4], which provides a C++ friendly interface to

the standard MPI. However the library does not have any support for workpool

management.

1.3 Parallel functionality implemented

The following common parallel functionalities are implemented in this project.

• Scatter describes the sending of data from a central coordinator process to

a number of worker processes. Given a data set of size n, and a number of

processes p, the data is generally divided into sets of size n/p. The ith set is

then sent to the ith process.

Main classes : Scatter1d, Scatter2d

• Gather describes an action that is essentially the opposite of scatter. After data

is scattered, the processes each perform some application specific computations.

The coordinator then gathers the data from each of the worker processes. The

coordinator may then perform some computation on the gathered data.

Main classes : Gather1d, Gather2d

• All-to-all communication happens when all of the processes need to send and

receive data to and from all of the other processes.

Main classes : AllToAll1d, AllToAll2d

• Distributed file merge is a variation of gather. This is necessary when a number

of files are distributed over the cluster and also need to be merged and stored

centrally at the coordinator process.

3

Main classes: FileMerge

• Centralized workpool. In the centralized model, the coordinator process main-

tains a pool of tasks that need to be performed. It sends each process a task.

When the process is finished, it tells the coordinator it is done and is ready for

a new task. The coordinator then sends another task. This is repeated until all

the tasks are completed.

Main classes: CentralizedWorkpool

• Distributed workpool. In the distributed model, each process maintains a pool

of tasks that need to be performed. If a process runs out of tasks it can ask

other processes for a task. Tasks are passed back and forth until they are all

completed.

Main classes: DistributedWorkpool

4

CHAPTER 2

THE TOOL KIT IMPLEMENTATION

2.1 Introduction

The following subsections deal with the implementation details common to all classes.

The classes will be discussed in the subsequent section.

2.1.1 Template Programming

C++ template-style programming has been used in the PTK C++ toolkit. This

allows us to use generic datatypes and also ensures typesafety.

Most of the classes in the PTK-C++ use the following style template <typename

TaskType, typename ResultType> The general convention followed is: TaskType

refers to the task datatype and ResultType refers to the result datatype.

2.1.2 Exception Handling

To provide custom exception handling, a new class ptkException has been defined in

PTK-C++. All the classes in PTK-C++ make use of ptkException class to throw

exceptions. When a process throws an exception, it is the responsibility of the user

to handle the exception and terminate the program accordingly.

5

2.1.3 Memory Handling

In PTK C version, memory allocation, in most cases, is managed by the library user.

However the PTK-C++ toolkit ended up allocating memory to the resulting data

buffers whenever the size of the buffer can be calculated by the library. This is a

benefit of using template programming.

2.1.4 Namespace

All the PTK-C++ classes have been added to a new namespace, ptk. To access the

C++ code, the library user has to either use using namespace ptk or use the scope

operator :: to access the C++ classes and methods.

6

2.2 Implementation Discussion

2.2.1 Init

The library user should access the methods getInstance() and initialize() at

the outset, before proceeding, as these methods initialize the variables like group size,

current process number and communicator handler. The previously global variables

for group size, current process number and communicator handler are no longer global

and have been made private members of the Init class. This class is a Singleton, to

avoid creating multiple copies of all these variables at runtime.

2.2.2 CommonVarHelper

This class is inherited by all the PTK-C++ classes. The CommonVarHelper provides

a method to access the private variables of the Init class by calling their respective

get methods.

However, it is the responsibility of the inheriting class to ensure that the values

are available in its class by calling the populatePtkVariables() method inherited

from CommonVarHelper.

2.2.3 Exit

The exitProgram() method in this class calls MPI::Barrier and MPI::Finalize.

Similar to the Init class, only one instance of this class should exist, so the Exit

class is implemented as a Singleton.

7

2.2.4 Workpool

This is an abstract class which provides some common variables and an interface for all

the workpool implementation classes. This class is inherited by the CentralizedWork-

pool and DistributedWorkpool classes.

The Figure 2.1 depicts the relationship between the various workpool classes which

are described in the subsequent paragraphs.

 CentralizedWorkpool

+ handleWorkpool(...)

 Workpool

+ handleWorkpool(...)
+ cleanup(...)
+ collectMessageInfo(...)

 DualPassTokenRing

 DistributedWorkpool

+ cleanup(...)
+ handleWorkpool(...)

+ collectMessageInfo(...)

+ initiateTokenRing(...)
+ setColorToBlack(...)
+ setColorToWhite(...)

+ sendInfoSets(...)

 SendTaskSets

+ sendInfoSets(...)

 SendResultSets

+ sendInfoSets(...)

+ processResult(...)

 WorkpoolUserInterface

+ processTask(...)

+ processTask(...)
+ processResult(...)

+ processTokenTag(...)

+ getResultBuffer(...)
+ getTaskBuffer(...)
+ getNumberOfSets(...)
+ getNumberOfSends(...)
+ populateResultBuffer(...)
+ populateTaskBuffer(...)
+ hasTasks(...)
+ decNumberOfSends(...)

 SendSets

+

 WorkpoolData

Figure 2.1: Diagram depicting the relationship between the workpool classes

2.2.5 WorkpoolUserInterface

In workpool management, the main pieces of data that are passed around are tasks

and results. A workpool needs to only know the task/result datatype and their size

in bytes. The workpool classes have no knowledge of how to process these tasks and

results. It is the responsibility of the library user to process the tasks and results.

8

The WorkpoolUserInterface is an abstract class that defines methods to process

tasks and results. All the methods in the WorkpoolUserInterface are implemented

to return exceptions.

All the workpool classes expect a reference to the WorkpoolUserInterface. When-

ever tasks/results are to be processed, the workpool calls the corresponding method

using the WorkpoolUserInterface reference it received. The library user wanting to

use the workpool classes should create a class which inherits from the WorkpoolUser-

Interface. As all the default methods in WorkpoolUserInterface throw exceptions,

the library user is forced to overide to these methods.

2.2.6 DistributedWorkpool

In the distributed version of the workpool, all the nodes are workers.

Distributed workpool imlementation mainly carries out the following:

• probes the network for tasks/results.

• receives tasks/results and calls the library-user methods to process Results/Tasks

• sends out tasks/results by grouping them based on the receiver

• detects termination

In PTK-C++, the object-oriented concept of abstraction is used. Instead of

including all the above listed functionalities in the same class, only the main essence

of the distributed workpool is encapsulated in the DistributedWorkpool class. The

implementation details for termination detection, and sending out of tasks/results,

have been moved to separate classes. By doing so, we achieve abstraction and

reusability.

9

2.2.7 SendSets

SendSets is an abstract class which provides the common interface to send tasks and

results. This class includes some common variables and a method sendInfoSets. In

PTK-C++, this class is inherited by SendTaskSets and SendResultSets.

2.2.8 SendTaskSets

The SendTaskSets class inherits from the SendSets class and implements the sendInfoS-

ets() method. This class mainly deals with the implementation details of sending

out tasks. sendInfoSets(...) loops through the incoming stream of tasks and

packs tasks into one buffer until it encounters a new sendTo receiver. If the sendTo

variable equals -1, then the tasks are sent to all the nodes in the group.

2.2.9 SendResultSets

The SendResultSets class inherits from the SendSets class and implements sendInfoS-

ets() method. This class mainly deals with the implementation details of sending

out results. sendInfoSets(...) loops through the incoming stream of results and

packs results into one buffer until it encounters a new sendTo receiver. If the sendTo

variable equals -1, then the results are sent to all the nodes in the group.

2.2.10 WorkpoolData

The WorkpoolData class was created to abstract the multiple parameters during the

communications between DistributedWorkpool and SendTaskSets/SendResultSets.

10

2.2.11 DualPassTokenRing

In PTK-C++, termination detection has been separated from the workpool logic and

implemented in a new class, DualPassTokenRing. This enables reusability of the

termination logic. DualPassTokenRing class uses the dual-pass token-ring algorithm,

originally developed by Djikstra, Feijen, and van Gasteren [5].

The main methods of this class are described briefly.

• setColorToWhite() Sets the color of the token to white.

• setColorToBlack() Sets the color of the token to black.

• processToken(....) This method decides how to modify the process color

and token based on the incoming token value. If the received token is white

and the process color is white, it passes on the white token. If the received token

is white and the process color is black, it turns the token black and passes it

on. It the token is black, it will be passed on as is, regardless of the color of

the process. After a process passes on the token, it changes its color to white.

If the root receives a white token, then it sets the incoming type variable to

DONETAG. Now it is the responsibility of the calling process to parse the DONETAG

and decide on the next course of action. In the DistributedWorkpool class,

the root sees that the type is set to DONETAG and sends out DONETAG to all the

workers.

• initiateTokenRing() The root from the workpool calls this method to start

the token ring process.

11

2.2.12 CentralizedWorkpool

CentralizedWorkpool is the subclass of the Workpool class. The library user wanting

to use the centralized workpool, invokes the handleWorkpool(...) method of the

CenralizedWorkpool class.

The implementation logic in the PTK-C++ version has been divided into multiple

methods, as opposed to one single function in PTK-C version. The rootProcess(...)

method takes care of the coordinator‘s functionality.

The coordinators‘ (root process) responsibility is to maintain a pool of tasks,

distribute them to the workers, process results, and terminate the function when all

the tasks have been completed. Tasks are stored in a vector. The coordinator is given

an initial set of tasks to begin with, called the startingObjects.

The coordinator then enters a loop, waiting for messages from the workers. The

received message may be a request for a task, or a result. If the request is for a task,

and the task list is not empty, the coordinator sends the worker a task. If the request

is a result, the coordinator calls the processResults(...) method.

The workers also enter a loop. They send a request for a task to the coordinator

and then receive the task. The processTask(...) method is called and the result

is sent back to the coordinator. The loop is terminated when the worker receives a

DONETAG message from the coordinator.

2.2.13 Scatter1d

The Scatter1d class is the C++ implementation of the scatter functionality.

The scatter operation in the Scatter1d class is mainly carried out by

scatterRootOperation(...) and scatterNonRootOperation(...).

12

scatterRootOperation(...) sends out data to the receiving nodes. In scatterN-

onRootOperation(...), the library allocates memory to the receiving buffer and

populates it with the data received from the root.

2.2.14 Scatter2d

Scatter2d class is the C++ implementation of the scatter2d functionality.

The scatter operation in the Scatter2d class is mainly carried out by

scatterRootOperation(...) and scatterNonRootOperation(...).

In the scatterRootOperation(...) the root distributes the data in a two-

dimensional array to all the receiving nodes. In the scatterNonRootOperation(...)

the non-root process allocates memory for an one-dimensional array and populates it

with data received from the root.

2.2.15 Gather1d

The gather operation in the Gather1d class is mainly carried out by

gatherRootOperation(...) and gatherNonRootOperation(...).

In gatherRootOperation(...) the root gathers data from other process nodes

and stores it in a one-dimensional array. In gatherNonRootOperation(...) the

nodes send an array of size sendCount, with the exception of the last process which

sends an array of size lastCount.

2.2.16 Gather2d

The gather operation in the Gather2d class is mainly carried out by

gatherRootOperation(...) and gatherNonRootOperation(...).

13

In gatherRootOperation(...) the root allocates memory to the two-dimensional

array and then fills it up with the data coming from the other nodes. In the resulting

two dimensional array, each row corresponds to data from one node. The number of

rows in the two-dimensional array at root equal the number of processes in the group.

In gatherNonRootOperation(...), the process in the group sends a one-dimensional

array to the root.

2.2.17 AllToAll1d

Using the AllToAll1d class, each process node can send and receive the same amount

of data to and from the other processes.

In the sendAllToAll(...) method, each process loops with the number of

iterations equal to the group size. At each iteration, each process sends data to

the process in the ith position to the right, and receives from the process i.

2.2.18 AllToAll2d

Using the AllToAll2d class, each process node sends and receives a variable amount

of data from all the other processes. The communication pattern is the same as

that of the AllToAll1d. The sendAllToAll(...) method implements the main

logic for the AllToAll2d. This method receives a two dimensional array as input.

Each row in this array corresponds to a process in the group. The result from

AllToAll2d communication is a two-dimensional array. The toolkit allocates memory

and populates it with data and returns the two-dimensional array to the user program.

14

2.2.19 Multicast

Using the mcast(...) method of the Multicast class, a sending node can send a

collection of data to all the other nodes in the group.

2.2.20 Filemerge

The FileMerge class merges all the files received from the other processes.

15

CHAPTER 3

USING THE TOOLKIT: EXAMPLES

Snippets of code pertaining to the shortestpath calculation, using the CentralizedWo-

rkpool and DistributedWorkpool, are presented here. The full code can be found

at

$PTK HOME/examples/ShortestPathCentralizedImpl.cpp.

$PTK HOME/examples/ShortestPathDistributedImpl.cpp.

Other examples, which show the usage of the various PTK-C++ classes can be

found in $PTK HOME/examples. Please refer to Table 3.1 and Table 3.2 for the list of

examples.

Table 3.1: PTK examples and corresponding classes (Part 1)
Toolkit Class Example/test program
AllToAll1d AllToAll1dImpl.cpp
AllToAll2d AllToAll2dImpl.cpp

BucketSortWithAllToAll2dImpl.cpp
CentralizedWorkpool ShortestPathCentralImpl.cpp

ShortestPathCentralMoreEfficientImpl.cpp
SumOfSquaresTest.cpp

CommonVarHelper all programs
DistributedWorkpool ShortestPathDistributedImpl.cpp

ShortestPathDistributedMoreEfficientImpl.cpp

16

Table 3.2: PTK examples and corresponding classes (Part 2)
DualPassTokenRing ShortestPathDistributedImpl

ShortestPathDistributedMoreEfficientImpl.cpp
Exit all programs
FileMerge FileMerge.cpp
Gather1d Gather1dTest.cpp
Gather2d Gather2dTest.cpp
Init all programs
Multicast ShortestPathCentralImpl.cpp

ShortestPathCentralMoreEfficientImpl.cpp
Scatter1d ShortestPathDistributedImpl.cpp
Scatter2d BucketSortWithScatterImpl.cpp
SendTaskSets ShortestPathDistributedImpl.cpp

ShortestPathDistributedMoreEfficientImpl.cpp
SendResultSets ShortestPathDistributedImpl.cpp

ShortestPathDistributedMoreEfficientImpl.cpp
Workpool ShortestPathCentralImpl.cpp

ShortestPathDistributedImpl.cpp
WorkpoolData ShortestPathDistributedImpl.cpp

ShortestPathDistributedMoreEfficientImpl.cpp
WorkpoolUserInterface ShortestPathCentralImpl.cpp

ShortestPathDistributedImpl.cpp
ptkException all programs

3.1 Example using the ShortestPathCentralWorkpool

The shortest path example has been divided into two classes ShortestPaths ,

ShortestPathImpl1 and one main program ShortestPathCentralImpl.cpp.

Shortestpath logic common to both centralized and distributed workpool examples

has been included in the ShortestPaths class.

The library user should create a class that inherits from the WorkpoolUserInterf-

ace and provide implementations for the inherited methods, processTask(...) and

processResult(...). This is illustrated in the snippet below.

17

class ShortestPathImpl1: public WorkpoolUserInterface<int,int> {

int processTask(int *task, int **ptkResult, int *returnSize);

int processResult(int *results, int **ptkNewTasks, int *numNewTasks);

}

The task in this example is composed of a vertex, represented as an int, followed by

an array of ints, which represent the current best set of distances from the source. The

processTask(...) method of the ShortestPathImpl1 class, copies the incoming

task values into a local vertex value and a distances array. distances is a member

of the ShortestPaths class.

The processTask(...) method then traverses the distances array, checking to

see if there are any new distances that are better than the current one. If it finds a

better distance, it stores the new information. The first value it packs is the array

index, which represents the path through which the new distance comes. The second

value is the vertex, and the third is the new distance. These can be thought of as sets

of results. These results are packed into a global array so that we are not incurring

the overhead of frequent memory allocation and deallocation. The function returns

values appropriate to whether or not it found any new results.

The processResult(...) method of the ShortestPathImpl1 class, handles the

incoming new results. The number of results in the results array is the first element in

that array, represented as an integer. This value is extracted and assigned to a value

named size. The results array is iterated size times. At each iteration, the vertex,

the vertex the new distance is through (the fromVertex), and the new distance are

considered. If the new distance is better than the distance we have stored for this

vertex, the new information is stored. If new information is stored, a flag is set to

indicate that there is new data for that vertex. Then the array of flags is looped

18

through, and new tasks for vertices are created if there is new information to handle.

The main pieces of code in ShortestPathCentralImpl.cpp :

As Init and Exit are Singleton classes, getInstance() methods need to be

invoked.

Init &init1 = Init::getInstance();

Exit &exit1 = Exit::getInstance();

The initialize() method from the Init class initializes the PTK environment.

Failure to invoke this method will result in malfunction of the code.

init1.initialize(argc, argv);

The current process number (me) and group size (gsize) values need to be

retreived in the following manner.

me = init1.getMyProcessNumber();

gsize = init1.getGroupSize();

An instance of the CentralizedWorkpool class is created by passing in a reference

to ShortestPathImpl1, a subclass of the WorkpoolUserInterface.

ShortestPathImpl1 *sPathImpl = new ShortestPathImpl1(....);

wpool = new CentralizedWorkpool<int, int>(sPathImpl,

granularity,

19

root,

verbose);

In order to trigger the centralized workpool logic, the handleWorkpool(...)

method is called.

try {

messagesSent = wpool->handleWorkpool(A,

taskSize,

resultSize,

1); // arraylen

} catch (ptkException* e) {

cout << "Exception caught" << endl;

cerr <<e->getMessage() << endl;

}

exitProgram() needs to be called at the end of every MPI program as it invokes

MPI::Finalize().

exit1.exitProgram();

3.2 Example using the ShortestPathDistributedWorkpool

The shortestpath example using the DistributedWorkpool is similar to the above ex-

ample. This section deals with those pieces that differ from the ShortestPathCentraliz-

edWorkpool example.

The ShortestPath example has been divided into two classes ShortestPaths ,

ShortestPathImpl and one main program ShortestPathDistributedImpl.cpp.

20

The library user should create a class that inherits from the WorkpoolUserInterface

and provide implementation to the inherited methods, processTask(...) and

processResult(...). This is illustrated in the snippet below.

class ShortestPathImpl: public WorkpoolUserInterface<int,int>

{

int processTask(int *dataToProcess, int tasksToProcess,

int **ptkNewTasks, int *numTasks,

int **ptkResults, int *numResults);

int processResult(int *result);

....

}

In this example, each process is responsible for (total vertices / number of processes

in group) number of vertices. As each process keeps its own current set of best results,

the entire distance array does not need to be sent as part of the task.

The processTask(...) method picks up the vertex, path, and distance infor-

mation from the incoming task. It iterates through its current best distances array

to see if the new vertex information creates any new tasks. As it finds new tasks it

stores them up. Each new task contains information about the process to send the

new task to, the vertex, the path, and the new distance.

The processResult(...) method is triggered at each node and it iterates

through the new distances received, compares them to the nodes’ own current best

data, and replaces any values that are better than the current one.

21

Main pieces of code in ShortestPathDistributedImpl.cpp :

An instance of the DistributedWorkpool class is created by passing in a reference

to ShortestPathImpl, a subclass of the WorkpoolUserInterface.

ShortestPathImpl *sPathImpl = new ShortestPathImpl(....);

Workpool<int> *wpool = new DistributedWorkpool<int, int>(sPathImpl,

granularity,

root,

verbose);

In order to trigger the distributed workpool logic, the handleWorkpool(...)

method is called.

try {

messagesSent = wpool->handleWorkpool(A,

taskSize,

resultSize,

1); // arraylen

} catch (ptkException* e) {

cout << "Exception caught" << endl;

cerr <<e->getMessage() << endl;

}

22

CHAPTER 4

TESTING AND BENCHMARKING

4.1 Testing coverage of toolkit classes

The tables 4.1 and 4.2 list out the various classes and their corresponding test

programs.

Table 4.1: Testing coverage of toolkit classes (Part 1)
Toolkit Class Example/test program
AllToAll1d AllToAll1dImpl.cpp
AllToAll2d AllToAll2dImpl.cpp

BucketSortWithAllToAll2dImpl.cpp
CentralizedWorkpool ShortestPathCentralImpl.cpp

ShortestPathCentralMoreEfficientImpl.cpp
SumOfSquaresTest.cpp

CommonVarHelper all programs
DistributedWorkpool ShortestPathDistributedImpl.cpp

ShortestPathDistributedMoreEfficientImpl.cpp
DualPassTokenRing ShortestPathDistributedImpl

ShortestPathDistributedMoreEfficientImpl.cpp
Exit all programs
FileMerge FileMerge.cpp
Gather1d Gather1dTest.cpp
Gather2d Gather2dTest.cpp
Init all programs

23

Table 4.2: Testing coverage of toolkit classes(Part 2)
Multicast ShortestPathCentralImpl.cpp

ShortestPathCentralMoreEfficientImpl.cpp
Scatter1d ShortestPathDistributedImpl.cpp
Scatter2d BucketSortWithScatterImpl.cpp
SendTaskSets ShortestPathDistributedImpl.cpp

ShortestPathDistributedMoreEfficientImpl.cpp
SendResultSets ShortestPathDistributedImpl.cpp

ShortestPathDistributedMoreEfficientImpl.cpp
Workpool ShortestPathCentralImpl.cpp

ShortestPathDistributedImpl.cpp
WorkpoolData ShortestPathDistributedImpl.cpp

ShortestPathDistributedMoreEfficientImpl.cpp
WorkpoolUserInterface ShortestPathCentralImpl.cpp

ShortestPathDistributedImpl.cpp
ptkException all programs

4.2 Graphs comparing the performance of C vs C++

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20

Ti
me

in
sec

on
ds

Vertices

C++
C

Figure 1: C versus C++:Shortest Path Central (Simple) - with granularity = 1.

i

Figure 4.1: C versus C++:Shortest Path Central (Simple) - with granularity = 1.

Vertices in K‘s

Figure 4.1 illustrates the difference in performance between the C and the C++

version. The performance is comparable and shows that there is not much overhead

24

from the object oriented approach. The C version of the PTK stops functioning

after 6000 vertices. This is an artifact of malloc() which is used in the memory

allocation. The C version uses a growable array which doubles its size, on the fly,

whenever the original array runs out of memory. malloc() has a limitation where it

cannot allocate memory beyond a certain value depending on the compiler. On onyx

the limit is 2Gig. Once the program gets to a point where more than 2Gig needs to

be allocated, malloc() returns a NULL pointer and the program exits.

This can be surmounted in other ways, like using linked lists. This, however,

resulted in significant performance degradation and was not very practical when

implemented. The C++ version uses vectors, which are available in C++. The

memory allocation is handled by C++ libraries. As a result, the C++ version was

able to run upto 20000 vertices.

0

50

100

150

200

250

0 2000 4000 6000 8000 10000 12000

T
im

e
in

se
co

n
d
s

Vertices

C++
C

i

Figure 4.2: C versus C++:Shortest Path Central:Granularity=200, Vertices per

task=100

25

Figure 4.2 illustrates the performance of the C and C++ versions for the more

efficient case of the ShortestPathCentralized example. As in the previous graph, the

C version exhibits the limitation of malloc() and stops functioning at 6000 vertices.

0

50

100

150

200

250

300

350

400

450

500

0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
in

se
co

n
d
s

Vertices

C++
C

i

Figure 4.3: C versus C++:Shortest Path Distributed (Simple) - with granularity = 1

Figure 4.3 illustrates the performance of the C and C++ versions for the simple

case of the ShortestPath example, which uses the Distributed Workpool. The per-

formance is very similar. The memory allocation constraint for distributed workpool

is much more relaxed than the centralized workpool, as memory is allocated across

multiple machines.

26

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
in

se
co

nd
s

Vertices

C++
C

i

Figure 4.4: C versus C++:Shortest Path Distributed:More Efficient,Granularity=200

Figure 4.4 illustrates the performance of the C and C++ versions for the more

efficient case of the ShortestPath example, which uses the Distributed Workpool. The

performance is very similar.

4.3 Simulation notes

All the graphs were generated with the number of processors = 20.

Testing was performed on two department clusters, onyx and beowulf.

27

CHAPTER 5

CONCLUSIONS

5.1 What have we done so far?

PTK-C++ provides an object-oriented version of PTK-C. PTK-C++ now allows the

user to fully reap the benefits of the MPI C++ bindings.

PTK-C++ provides support for common design tasks used throughout parallel

programs. The examples given help a user understand how to use the library classes.

The data-sharing patterns of gather, scatter, and all-to-all allow users the flex-

ibility of having odd amounts of data that are not evenly divisible by the number

of processes. The two-dimensional versions allow the user to share “ragged” arrays

of data. These elements are not provided by MPI. The file-merging functionality

automates a common cluster task.

The workpools remove a significant layer of detail from writing workpool code.

The user of the workpool needs to provide the library with functions for processing

tasks and results. The library takes care of sending and receiving tasks and results.

Most importantly it handles termination detection, which can be quite cumbersome

to design and write.

The testing results are consistent with expectations in that PTK-C++ is compa-

rable to PTK-C in terms of performance.

28

In most cases it would be more efficient to use the toolkit than to rewrite the code

to incorporate the efficiencies already present in PTK.

5.2 Design Patterns

The Singleton pattern has been used for imlementing the Init and Exit classes as

they fit the criterion for the Singleton.

The project has a few instances where the code was implemented based on inspi-

ration from the Strategy pattern. For example, the Workpool abstract class defines

two(CenralizedWorkpool and DistributedWorkpool) sets of algorithms. Each of

the set encapsulates its own algorithm and the user is given the choice of picking the

algorithm at run-time.

5.3 What have we learned

• Object Oriented Design: A project cannot be started with the preconceived

notion of using Design patterns. It involved thinking in terms of classes and

object oriented approach. The design started of by investigating the required

functionality rather than by translating the C code into C++.

• Had to learn the details of MPI-C++ to use them in the PTK.

5.4 Potential Future work

5.4.1 Complex Datatypes

The PTK-C and PTK-C++ implementations function with simple datatypes. The

PTK-C++ classes could be easily enhanced to work for complex datatypes.

29

5.4.2 Multi-threading

Experimenting with multi-threading, particularly in the centralized workpool, would

be worth while doing. There may be a bottleneck in the root being able to hand out

tasks quickly enough. Creating separate threads for communication and computation

might solve this problem. The decision was made to avoid any threading, to make

the code as universal and portable as possible.

30

REFERENCES

[1] Kirsten Allison. PTK: A PARALLEL TOOLKIT LIBRARY M.S. Thesis,
Computer science department, Boise State university, 2007

[2] William Gropp, Ewing Lusk, Anthony Skjellum. Using MPI: Portable Paral- lel
Programming with the Message-Passing Interface. The MIT Press, Cambridge,
Massachusetts, 1999.

[3] Sachs, N, McGough, J. A Hybrid Process Farm/Work Pool Implementation
in a Distributed Environment Using MPI. Conference Proceedings, Midwest
Instructional Computing Symposium , Duluth, MN, April 2003

[4] Douglas Gregor, Matthias Troyer. Boost.MPI.
http://www.boost.org/doc/libs/1 46 1/doc/html/mpi.html#stylefiles

[5] Edsger W. Dijkstra, W.H.J Feijen, A.J.M van Gasteren. “Derivation of a Ter-
mination Detection Algorithm for a Distributed Computation.” Information
Processing Letters, vol. 16(5), pp. 217-219.

[6] Jason Man and Amit Jain. PRAND: A Parallel Random Number Generator. Oct
2008. http://cs.boisestate.edu/~amit/research/prand.

31

APPENDIX A

MPI DATATYPES

The datatypes supported in the MPI version of the PTK-C++ toolkit are defined as

follows:

MPI::CHAR

MPI::SHORT

MPI::UNSIGNED_SHORT

MPI::INT

MPI::UNSIGNED

MPI::LONG

MPI::UNSIGNED_LONG

MPI::FLOAT

MPI::DOUBLE

MPI::LONG_DOUBLE

MPI::LONG_LONG_INT

32

APPENDIX B

INSTALLING THE PTK LIBRARY

The library is available to download at http://cs.boisestate.edu/~amit/research/ptk.

You can either download the library as tarballs or as RPM files. You will need MPICH

version 2 (or some other MPI-2 supporting libary). You will also need the prand

library [6] to run some of the examples.

To install MPI version of the PTK library from the tarball, use the following

commands:

tar xzvf ptk-mpi.tar.gz

cd ptk-mpi/src

su

make system_install

	Boise State University
	ScholarWorks
	12-1-2012

	Object Oriented Implementation of the Parallel Toolkit Library
	Sandhya Vinnakota

	tmp.1357582564.pdf.ukpjY

