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ABTRACT 

 

This paper explains and evaluates the potential and limitations of conducting Cross-Well Radar 

(CWR) in sandy soils. Implementing the experiment and data collection in the absence of any 

scattering object, and in the presence of an acrylic plate (a representative of dielectric objects, such 

as DNAPL (dense non-aqueous phase liquid) pools, etc.), as a contrasting object in a water-

saturated soil is also studied. To be able to image the signature of any object, more than one pair 

of receiving and transmitting antennas are required. The paper describes a method to achieve 

repeatable, reliable, and reproducible laboratory results for different transmitter-receiver 

combinations. Different practical methods were evaluated for collecting multiple-depth data. 

Similarity of the corresponding results and problems involved in each method are studied and 

presented. The data show that the frequency response of a saturated coarse-grained soil is smooth 

due to the continuous and dominant nature of water in saturated soils. The repeatability and 

potential symmetry of patterns across some borehole axes provide a valuable tool for validation of 

experimental results. The potential asymmetry across other borehole axes is used as a tool to 

evaluate the strength of the perturbation on  the electromagnetic field due to hidden objects and to 

evaluate the feasibility of detecting dielectric objects (such as DNAPL pools, etc.) using CWR. 

The experimental simulation designed for this paper models a real-life problem in a smaller scale, 

in a controlled laboratory environment, and within homogenous soils uniformly dry or fully water-

saturated, with a uniform dielectric property contrast between the inclusion and background. The 

soil in the field will not be as homogenous and uniform. The scaling process takes into 

consideration that as the size is scaled down; the frequency needs to be scaled up. It is noteworthy 

that this scaling process needs to be extensively studied and validated for future extension of the 

models to real field applications. For example, to extend the outcome of this work to the real field, 

the geometry (antennas size, their separation and inclusion size) needs to be scaled up back to the 

field size, while soil grains will not scale up. Therefore, soil, water and air coupling effects and 

interactions observed at the laboratory scale do not scale up in the field, and may have different 

unforeseen effects that require extensive study.  

 

CE Database subject headings: Radar; Antennas; Saturated Soil; Computerized Simulation; 

CWR; GPR; Cross-Tomography 

              

 

BACKGROUND 

Ground penetrating radar (GPR) and cross-well radar (CWR, otherwise known as cross-borehole GPR) are radar-

based geophysical techniques that can be implemented in a vast variety of applications such as forensics, safety, 

security, civil infrastructure, and geoenvironmental engineering. Bradford and Wu (2007) successfully used GPR to 

detect contaminated shallow soils. While GPR is the least invasive radar-based method, it is not a practical one for 

deep investigations. CWR may be a more effective method for applications such as deep contaminant detection. The 

complex resistivity (CR) method is another technique that has shown strong potential so far for DNAPL detection as 

well (Blackhawk Geoservices 2001).  
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Cross-well radar (CWR) is essentially the same as surface reflection GPR, except that it uses electromagnetic (EM) 

transmitting and receiving antennas installed in boreholes. The transmitting antenna propagates EM waves through 

the medium. Any scattering object with contrasting dielectric properties with respect to the background medium can 

reflect or scatter the wave. The wave propagation can also speed up or slow down due to this contrast, since 

''µεcv = , where v and c are respectively the electromagnetic wave (EM) wave velocity in the medium and 

free-space, ε’ and µ’ are respectively the real relative dielectric permittivity and relative magnetic permeability of 

the medium. 

 

The measured data can be in the form of travel time (as with most GPR equipment) or frequency-response 

(magnitude and phase). Surface reflection GPR only measures the reflected portion of EM waves while CWR can 

measure reflected and scattered as well as transmitted portions of EM energy. 

 

Growing interest in cross-well methods and applications is evident in a special issue of Geophysics (Rector 1995). 

Early applications of CWR surveys (also labeled geotomography) were reported by Lawrence Livermore National 

Laboratory (Lager and Lytle 1977; Daily and Lytle 1983; and Daily and Ramirez 1984). CWR can be used along 

with static and dynamic imaging. Dynamic imaging can be applied to the collected cross-well tomography 

measurements to identify preferential flow paths and can help characterize complex aquifer heterogeneity (Lane et 

al. 2000). 

 

Preliminary experimental research and numerical simulation by a finite-difference time-domain (FDTD) method by 

the authors (Farid et al. 2003) demonstrate that the locations of the transmitting and receiving antennas are vital for 

detection, due to spatial variations in object signature strength. These locations are the key antenna positions for 

sensing subsurface objects. Unfortunately, due to lack of information about the nature, shape, and location of these 

objects, there is little information about the optimum antenna positions. Therefore, there is a need for an efficient 

antenna installation pattern to cover these key positions optimally in order to collect enough data to construct images 

of the objects. Potential implementation of CWR in geotechnical and geoenvironmental applications requires 

deployment of an optimum number of antenna boreholes to balance the trade-off between image accuracy and the 

extent of the covered area, and to minimize the risk of drilling through contaminated zones. This requires enough 

knowledge about key positions in the scattered field due to the object and appropriate 3D antenna installation 

patterns. One popular pattern of antenna installation is cross- tomography, in which the transmission measurements 

across different boreholes on a circle around the object are collected. Multiple transmitter and receiver locations at 

multiple depths constitute the antenna pattern to enrich the data pool. 

 

The tomogram and tomography phenomena were first used in medical applications, as a powerful subsurface 

imaging technique for a vast range of applications. A tomogram refers to a slice or section imaged by moving the 

transmitter (e.g., X-ray tube) and receiver (e.g., recording film) simultaneously and in opposite directions. Most 

radar tomography studies have been on 2D cross-well methods and only few exist on 3D applications (Eppstein and 

Droughty 1998). Olsson et al. (1992) describe an example of 2D cross-well tomography.  

 

Fundamental theoretical and experimental forward modeling knowledge of EM wave propagation and scattering are 

crucial to study CWR. Different approaches can be pursued to simulate the problem both experimentally and 

theoretically. This paper addresses the challenges and feasibility of experimental cross-well tomography data 

collection for later comparison with a first order Born approximation simulation of the problem in the frequency 

domain (for more information refer to Zhan et al. 2007). Clearly, collecting reproducible and reliable data is the first 

step of every experimental research. The effort described in this paper is to resolve the problems and challenges in 

achieving reproducible cross-tomography experimental data and to validate the feasibility of the technique. These 

issues and challengesare not specific to this experimental work and exist in other experimental and field works in 

other EM and non-EM sensing modalities used to detect other subsurface objects such as landmines, tunnels, 

DNAPLs, and engineered structures. Similarly, the proposed solutions are or can be applied to other fields as well. 
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EXPERIMENTAL METHODOLOGY AND VALIDATION 

 

Experimental Setup and Instruments 
 

A laboratory testing facility (referred to as SoilBED) was constructed for controlled testing of underground 

subsurface imaging. The facility is used for pilot-scale testing, characterization of soil, and validation of antennas 

and instrumentation. The details and components of the SoilBED experimental setup are presented in Farid et al. 

(2006). The setup is 1.5 m by 1.2 m by 2.75 m. The soil selected for the SoilBED is a uniform SP (poorly graded 

sandy soil) as a representative of a typical aquifer soil. The soil characteristics are presented in Table 1. The soil 

hydraulic conductivity (k) is 0.01 cm/s, which allows water saturation and drainage in a short period (less than an 

hour for this setup). To facilitate water saturation and drainage, a perforated PVC piping network was constructed at 

the bottom of the cell. This drainage system was covered by a fabric filter, buried within a layer of gravel, and then 

separated from the main soil body by another geotextile fabric. Significant time, effort, and extreme caution were 

required to deposit the soil uniformly, loosely and with no compaction to achieve a homogeneous soil medium. This 

is required, as the first step of the research, to develop and evaluate the feasibility of the technique in a controlled 

environment. The field conditions are not homogenous, and hence, future experimental work should be implemented 

in heterogeneous conditions. This selection of homogeneous controlled soil medium for the experiment will create 

more challenges in the comparison efforts with theory and the derivation of the channel transfer function (CTF) 

introduced by the authors for comparison purposes in a different paper. Since, the CTF derivation uses an 

assumption based on homogeneity at this stage (for more information refer to Zhan et al. 2007). This will be the 

biggest challenge of the future works.  

 

The hardware consists of: (a) an Agilent vector network analyzer (VNA) model [8714ES] with an operation 

frequency band of 0.3 MHz – 3 GHz; (b) a 12-channel Agilent multi-port test-set model [87050E] working in the 

frequency range 3 MHz – 2.2 GHz, used for cross-well tomography data collection; (c) eight ferrite-bead jacketed 

monopole antennas with 5 cm long exposed center conductors and dielectric material (for more information, refer to 

Farid et al. 2006); and (d) PVC casings. In terms of measurement uncertainty and errors, the VNA has a nominal 

reflection tracking of 0.02 dB and transmission tracking of 0.055 dB for measurements made using “fine” 

bandwidth, without averaging, and at an environmental temperature of 25° ± 5° C, with less than 1° C deviation 

from the calibration temperature, provided full 2-port calibration is practiced. The devices and antennas were 

validated in a previous work by comparing the dielectric permittivity and electric conductivity of a known sandy soil 

material using different methods (for more information, refer to Zhan et al. 2007 and Kurson 2006). A wideband 

stepped-frequency analysis produces a representative frequency response of the soil to assess the advantages and 

limitations of transmission and coupling of different individual frequencies through soil and antennas. The technique 

is studied at higher frequencies (center frequency of 1.3 GHz) at a space scale of 1/100. It is believed that the size 

can be scaled up to real field size along with scaling down the frequency to a lower center frequency. This scaling 

process can be nonlinear. The detection resolution will also decrease. In other words, the size of the smallest 

detectable scatterer will scale up as well. Even though, in the scaling process, the object size, and antennas size and 

separation will be scaled up as the frequency is scaled down; soil particles cannot be scaled. There may be scattering 

due to the soil particles in this pilot-scale experiment, which will not occur in the real-field case. The scaling process 

and related issues are of great importance and concern and need to be addressed and validated via laboratory and 

field experiments in the future, since they are beyond the scope of this paper. PVC casings with PVC bushings are 

used to hold each antenna centered in its casing. Ferrite beads are used to eliminate the wave leakage along the feed 

cable.  

 

Data Collection 

 

To collect enough datasets to reconstruct images of soil background and scatterers, the EM field should be measured 

at key positions with strong scattered field magnitude. Since these key points are not known, an optimum pattern of 

antennas installation is required. A popular one is a cross-tomography pattern with multiple transmitter-receiver 

locations at multiple depths. Eight PVC-cased boreholes are installed on the perimeter of a circle with 30.5 cm 

diameter in the SoilBED. For one transmitter (T) located in each borehole, a single reflection measurement (S11) and 

seven transmission measurements (S21) to seven receivers (R) in the other boreholes are available. Three different 

depths of 22.9 cm, 27.9 cm, and 33.0 cm are selected for the transmitters and receivers to simulate multiple-depth 

data collection, which results in nine depth-combinations. These depths are simply selected to simulate a 1/100 scale 
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field problem. In other words, the depth increment was the main selection based on the size of the antenna (extended 

dielectric of the monopole antennas = 2” (5.1 cm)). For a perfectly homogenous soil background with a flat ground 

surface, the response of Ti to Rj is theoretically equal to that of Tj to Ri. This would reduce the depth combinations 

from nine to six. However, homogeneity is not necessarily guaranteed in the experiment, so all of the nine 

background (soil only) depth-combinations were collected to validate the measurements and confirm the soil 

background uniformity and reciprocity. 

 

For the cases involving buried scattering objects or volumes, such uniformity is available only if the scatterer is 

located in a symmetric position with respect to the antennas. Hence, all nine depth-combinations are necessary, 

making a total of 576 (8 x 8 x 9) datasets for each background (soil only) or scattered case. A schematic plot of the 

cross-tomography setup is shown in Fig. 1. To avoid moving the antennas between the boreholes and to enhance the 

data collection speed, a 12- channel multiport test-set device (Model 87050E) is used. Some steps and processes that 

have been adopted to improve the data collection procedure and validation are explained by Farid et al. (2006) and 

are summarized below. 

 

There are two alternative methods to collect data from multiple depths (Fig. 2): (i) install boreholes and casings at 

the same depths as antennas for each depth increment, and (ii) drill boreholes and install casings to the maximum 

required depths and install antennas at any desired depth. Transmission measurements are collected using both 

methods for relatively dry sand (air-dried to 3.9% moisture content, referred to as “drier sand”) and close to fully 

water-saturated sand (16.9% moisture content, referred to as saturated sand), and compared. The transmission 

measurements were collected at the same antenna depths, while boreholes were driven to the different borehole- 

depth-configurations of Fig. 2, and the results were compared in Figs. 3 and 4. Figs. 3 and 4 show that there are no 

significant differences between the results of the three installation methods in the drier and saturated soils, 

respectively. This can be explained by the low dielectric contrast of the air below the PVC pipes and the fact that 

very little EM field is radiated in the borehole volume below the lower antenna pole (null direction of the Z 

(vertically) polarized monopole antennas).  

  

EXPERIMENTAL RESULTS AND DISCUSSIONS 

 

Soil Background Uniformity 

 

Since measurements are collected across boreholes that are located on a circle in a controlled homogenous soil 

medium, the scatterer-free soil background data is theoretically expected to be symmetric with respect to T/R 

pairing. However, while symmetry is a good way of validating all soil background data sets, achieving the desired 

symmetric soil background data in practice is challenging. A template is used to obtain accurate antenna locations 

on the cross-tomography circle and ensure the antenna alignment. Fig. 5 shows the template and borehole-

numbering layout. The template has two sets of holes on two circles with two different diameters (12” (30.5 cm) and 

16” (45.7 cm)). In this paper, only the inner circle was used. 

 

Background (soil only) electrical field measurements were collected in the drier and saturated soils. Boreholes and 

PVC casings were installed precisely vertically at the desired locations and down to the maximum desired depth. 

Installing the PVC-cased boreholes in the soil disturbs the soil homogeneity and creates compacted dense or less 

compacted loose zones. However, due to lower dielectric contrast between the drier soil (ε ’Drier soil ≈ 4.5 to 4.42 at 

the frequency range of: f = 0.4 GHz to 2.2 GHz) and air (ε ’Air = 1), the inhomogeneities do not substantially affect 

the symmetry in the drier soil. In the saturated soils, however, the greater difference between the dielectric constant 

of water (ε ’Water ≈ 77 to 80 at the frequency range of: f = 0.4 GHz to 2.2 GHz (von Hippel 1954)) and the saturated 

soil (ε ’Saturated Soil ≈ 20.6 to 20 at the frequency range of: f = 0.4 GHz to 2.2 GHz (Zhan et al. 2007 and Kurson 

2006)), is expected to result in stronger field variations when the soil is disturbed. It is noteworthy that both the 

dielectric permittivity values for water and the saturated soil vary over the frequency range. 

 

To reduce the soil heterogeneity caused by borehole installation, the SoilBED was saturated and drained several 

times before starting each set of background (soil only) or scattered case experimentation. This was simply observed 

in an experiment where the drainage recharge process lowered the error between measurements collected at identical 

geometries at two different locations by improving the uniformity of the soil (for more information, refer to Farid et 



This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online on the Journal 

of Geotechnical and Geoenvironmental Engineering (doi: 10.1061/(ASCE)GT.1943-5606.0000028) published by American Society of Civil 

Engineers.  Copyright restrictions may apply. 

 

JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING © ASCE / April 2008 / 5 

al. 2006). Furthermore, the soil surface was graded to eliminate non-symmetric reflections from soil-air interface 

roughness.  

 

This is an attempt to simulate a controlled homogeneous soil condition in the laboratory for the initial steps of the 

research. The field conditions are not homogeneous. The issue of soil background heterogeneity is the greatest 

challenge of any geophysical investigation and needs to be addressed in the future.  

In this study, -2 dB to +2 dB is considered the acceptable margin of error (caused by soil heterogeneity) between 

potentially identical measurements due to geometrical symmetry. The acceptable error margin of 2 dB was selected 

based on the observations of the error between measurements collected at two equivalent points in the uniform soil 

in a previous experiment. Increasing the separation between the transmitting and receiving antennas decreases the 

transmitted energy level and increases errors of this type. Fig. 6 shows the potentially identical (due to symmetry) 

measurements collected in the drier and saturated soils with the transmitter depth of 22.9 cm and receiver depth of 

33.0 cm, as well as the difference (error) between the measurements. In the figures, T represents the transmitter and 

R represents the receiver (e.g., T1-R3 means the transmitter located in Borehole 1 and the receiver in Borehole 3). 

Due to the lossy nature of water and saturated soils, the power transmitted through the saturated soil is lower than 

through the drier soil. Therefore, transmitted signals (at the same antennas separation) through the saturated soil are 

weaker than the ones in the drier soil. In addition, the signal to noise ratio in the saturated soil is lower than in the 

drier soil. This leads to higher errors of the abovementioned nature in the saturated soil. This error is more 

pronounced at higher frequencies due to the higher sensitivity of small objects to shorter wavelengths.  

 

There are nine depth-combinations for the three selected depths. Background (soil only) symmetry was studied for 

all different transmitter and receiver depth-combinations in the drier and saturated soils. Any increase in the depth 

difference between the antennas results in an increase in the overall antennas separation (along the slope) for a 

constant horizontal antenna separation. Therefore, the repeatability errors are greater for greater depth differences 

between the transmitter and receiver antennas. 

 

Reciprocity was also assessed for transmission between antennas at different depths in the saturated soil condition. 

For example, the background (soil only) transmission measurements should be reciprocal when: (i) transmitter depth 

= 22.9 cm and receiver depth = 27.9 cm, or (ii) transmitter depth = 27.9 cm and receiver depth = 22.9 cm. This is 

confirmed in Fig. 7, except for higher frequencies where the signal to noise ratio is extremely low. 

 

Scattered Field, Symmetry, and Asymmetry Issues 
 

To evaluate the effect of the material, size and thickness of scattering objects on the EM field in saturated soils, the 

scattering effect of acrylic objects of different sizes on the EM field was studied in soil; only one case among those 

is presented in this paper. As mentioned before, significant efforts were applied to achieve soil homogeneity during 

and after installation of the scatterers to guarantee achieving identical results at identical  locations (due to 

symmetry) across the axis of symmetry of the geometry of scatterer positioning (Axis 2-6, Figs. 5 and 8). Although 

the PVC-cased boreholes and their surrounding soils were not disturbed, the soil within the circle was removed, the 

scatterers were precisely emplaced, and the soil was replaced. To ensure that the surrounding soil is as close as 

possible to the original background (soil only) case before the scatterer installation process, the soil was saturated 

and drained several times after the scatterer placement. This was necessary to eliminate any inhomogeneities caused 

by the installation process. To achieve correlation with homogenous soil conditions, this preparation process should 

be conducted with extreme care. The object evaluated in this study is an acrylic plate (8.9 cm x 8.9 cm x 0.5 cm). 

Acrylic was selected as a dielectric object (ε ’ ≈ 2.6) similar to pure DNAPL (typical DNAPLs ≈ 2.3) (Weast 1975). 

However, DNAPLs mixed with soil and water may have a different dielectric constant as the result of mixture (Ajo-

Franklin et al. 2004). A schematic of the top view of the scatterer in the soil is shown in Fig. 8. The plate is located 

symmetrically with respect to Axis 2-6, and off center within the cross-tomography circle. 

 

Symmetry in Scattered Field: 

 

Typical results are compared for the scatterer at the depth of 27.9 cm in the saturated soil with the antennas installed 

at multiple depths. The comparisons show the symmetry across Axis 2-6 and asymmetry across other axes. The 

transmission measurements across the following boreholes should be respectively identical due to the symmetry 

between axes: 2-1 versus 2-3, 2-4 versus 2-8, and 2-5 versus 2-7. Fig. 9 shows the measurements across some of the 
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symmetric axes and the corresponding error (the difference between these measurements) for transmitter and 

receivers at the same depth. Fig. 10 shows a similar set of results for the transmitter and receivers at different depths. 

As seen in Figs. 9 and 10, these potentially identical (due to symmetry) measurements in the background soil are 

very close. However, the results show that increasing antennas separation decreases the energy level, which in turn 

increases the error (difference between measurements across symmetric axes). Moreover, increasing the depth 

difference between transmitting and receiving antennas increases the interference by the soil-air interface, which is 

observed by comparing Figs. 9 and 10. 

 

Asymmetry in Scattered Field: 
 

The acrylic object was specifically positioned such that it selectively creates asymmetry along some axes to provide 

enough data for future inversion and image reconstruction purposes. Figs. 11 and 12 demonstrate that the scattering 

response (transmission response with the scatterer - transmission response without the scatterer) is strong enough to 

create asymmetry across the axes that are asymmetric at the presence of the scatterer but potentially symmetric in 

the absence of the scatterer (background: soil only). Fig. 11 shows the scattered fields across Axis 1-3 and Axis 5-7, 

where the transmitter and receivers are at the same depth, and the difference between the two measurements caused 

by the asymmetric positioning of the scatterer with respect to the two axes. Fig. 12 shows similar results to Fig. 11 

with the exception that the transmitter and receivers are located at different depths. In these asymmetric cases (Figs. 

11 and 12), the scatterer response is stronger than the error in the symmetric background (soil only) measurements 

(Figs. 9 and 10). This scattering response varies over the frequency range as both up and down shifts. This may be 

caused by the variations of the dielectric permittivity contrast between the soil and acrylic along the frequency range 

(acrylic is not dispersive, but soil is). It can be stated that the strong difference between the measurements across the 

asymmetric axes (because of the presence of scatterer) is representative of the strength of the scattering response and 

in turn a supporting fact for the feasibility of the detection. As expected, this difference is less visible at lower 

frequencies due to the lower sensitivity of small object to low frequency (long wavelength) waves.  

 

The real-field problem has been scaled up in frequency and down in size to create this experimental model. In this 

experiment, the resonance-frequency of the transmitting and receiving antennas (1.1 GHz) is designed high enough 

to detect the scaled-down object size. Frequencies lower than this designed resonance-frequency may not be able to 

detect the object in the experimental simulation. Field antennas are larger and have lower resonance-frequency to 

detect larger field objects. Accordingly, frequencies much lower than the field resonance-frequency may be too low 

to detect the real-field objects. 

 

Both antennas positioned at the same depth as the scatterer (Fig. 11) show a stronger detection potential than the 

antennas at two different depths each different from the depth of the scatterer (Fig. 12). This is an interesting 

observation, which may vary based on how the object is placed or, in other words, how EM waves cross the object 

(whether the wave crosses a larger object surface or a more significant object thickness).  

 

The other tool to distinguish the scattered case from background (soil only) is the difference between two sets of 

data acquired by depth profiling across symmetrical geometries. Fig. 13 studies this within the saturated soil. To 

simulate this invisible asymmetry in geometry in the absence of the scatterer, it is important to locate the scatter at a 

different horizontal distance to the transmitter than to the receiver. If the antennas are at two different depths and the 

object is located asymmetrically between them (e.g., off the center of the circle along Diagonal 2-6 in Fig. 8), 

switching the depth of the transmitter and receiver will make a difference in the scattered field, due to asymmetry. 

This has no effect on the background (soil only) field, due to symmetry. In order to be able to utilize this logic, the 

scatterer should be located in an asymmetric position between the two antennas (as shown in Fig. 13). Otherwise, 

the scattered results will be identical. Therefore, this fact is valid for Diagonal 2-6, but not valid for other axes such 

as Axes 1-4, 2-7, and 3-8 as shown in Fig. 8.  

 

It is important to note the difference between this phenomenon and the act of switching the VNA from S21 

(transmission from Antenna 1 to Antenna 2) to S12 (transmission from Antenna 2 to Antenna 1) while the location of 

Antennas 1 and 2 are not changed. S21 and S12 measurements are always identical and reciprocal in any background 

(soil only) or scattered case. In other words, S21 and S12 measurements for fixed antennas are always the same for 

both background (soil only) and scattered fields. Consider the two antennas that are installed in Boreholes 2 and 6 at 

depths 27.9 cm and 33.0 cm. If the transmitter and receiver locations are switched, the two sets of background (soil 
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only) data should be the same due to symmetry while the scattered observations should be different. The two 

identical background (soil only) results as well as the error between the two are shown within the saturated soil in 

Fig. 14. The scattered results and the difference between the two measurements (due to the presence of the scatterer) 

are shown in Fig. 15. As seen in Figs. 14 and 15, the errors between the geometrically identical background (soil 

only) measurements (Fig. 14) are smaller and in the form of one-way shifts (either up or down over the entire 

frequency range). On the other hand, the differences between the scattering responses for the measurements of Fig. 

15 are more pronounced and visible as both up and down shifts throughout the frequency range. Again, in Fig. 15 

(similar to the case of Fig. 13), these differences are less visible at lower frequencies (frequencies too low for the 

scaled-down object size, which are the ones lower than the designed resonance-frequency of the antennas in this 

experiment). Apparently, for the field, the resonance-frequency needs to be scaled down, and the object scaled-up. 

Accordingly, in the field, there are lower frequencies (lower than the designed resonance-frequency of the antennas) 

that are not capable of detecting the predictable field object size.  

 

CONCLUSIONS 

 

In the background (soil only) field, the visible symmetry in the geometry is valid for the measurements. However, 

this is not valid for the scattered field due to the presence of the hidden scatterer. This difference between the 

measurement with and without the presence of the scatterer provides a strong support for the validity of the 

measurements and feasibility of the detection method for the highly uniform sample. The off-center and asymmetric 

positioning of the target across some axes connecting boreholes provides more information than a symmetric centric 

positioning for future image reconstruction. The strength of the scattered field (difference between incident and total 

fields) supports the feasibility of the use of the CWR technique to detect dielectric objects such as DNAPL pools, 

tunnels, etc. Symmetry and asymmetry across different axes connecting boreholes due to geometry can verify some 

inaccuracies in the measurements. However, in order to use the measurement for inversion and reconstruction, a 

validated forward model is necessary. To validate any proposed forward model, the theoretically simulated and 

experimentally measured data need to be compared. The comparison cannot be possible unless the two are 

compatible. Comparison between the experimentally simulated results of this paper with a theoretical simulation 

(forward model) will help to provide a validated forward model for future inversion and image reconstruction. As in 

most other research areas, the two may not be immediately comparable. Necessary transformations should be 

applied to make the two compatible. The necessary transformation is presented in another paper by the authors.  

 

The work can be extended to study real-life problems, such as contaminant detection and monitoring. However, 

there are issues that need to be studied before the outcome is extended. The experimental simulations of this work 

models a real-life problem in a pilot-scale, and hence, at a higher frequency. Besides, the medium is a homogenous 

soil medium and in a controlled environment, with a uniform dielectric property contrast between the inclusion and 

background. The assumption has been the validity of a linear scaling relation between the size and frequency. The 

frequency was scaled up from the field inversely proportional to how the geometry of the problem (antennas size 

and separation, soil medium extent, and inclusion size) was scaled down. The only component that does not 

contribute to this scaling process accordingly, is the size of soil-grains, which can affect the coupling between the 

soil and antennas. Therefore, this scaling process needs to be extensively studied and validated, before the outcome 

of this work is extended to field applications 

 

NOTATIONS 

 

f = frequency; 

S11 = Reflection measurements at Port 1; 

S22 = Reflection measurements at Port 2; 

S21 = Transmission measurements from Port 1 to Port 2; 

S22 = Transmission measurements from Port 2 to Port 1; 

ε = Dielectric permittivity; 

ε’ = εr = Relative dielectric permittivity (dielectric constant); 

σ = Electric conductivity; and 

ω = Temporal angular frequency, and conjugate to time (t) in the frequency domain. 
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Fig. 1. Cross-well tomography setup: (a) cross-tomography antenna placement in SoilBED facility, (b) single 

transmitter at Borehole 1 and receivers at Boreholes 3, 4 and 7, (c) cross-well tomography in SoilBED 

facility, and (d) vector network analyzer model 8714ES (top), multiport test-set model 87050E (bottom) 

 

Fig. 2. Different alternatives to install borehole and antenna at variable depths: (a) one borehole driven to the 

required depth and the other one deeper, (b) both boreholes driven to the depth required for each 

increment, and (c) both boreholes driven to the ultimate depth for future use, which is deeper than 

required for this increment 

 

Fig. 3. Transmission measurements for 8” (20.3 cm) antenna separation in drier soil, transmitter depth = 9” 

(22.9 cm), and receiver depth = 7” (17.8 cm); within boreholes of different depths: 11” (27.9 cm), 9” 

(22.9 cm), and 7” (17.8 cm) 

 

Fig. 4. Transmission measurements for 8” (20.3 cm) antenna separation in saturated soil, transmitter depth = 9” 

(22.9 cm), and receiver depth = 7” (17.8 cm); within boreholes of different depths: 11” (27.9 cm), 9” 

(22.9 cm), and 7” (17.8 cm)  

 

Fig. 5. Experimental setup: (a) cross-tomography template and (b) typical top view of the cross-well 

tomography circle, and borehole numbering 

 

Fig. 6. Potentially identical background (soil only) results due to geometrical symmetry collected at transmitter 

depth of 27.9 cm, receiver depth of 33.0 cm, antenna locations of 1-3, 4-6 and 7-1 (8.5” (21.6 cm) 

antenna separation), for: (a) drier soil, (b) saturated soil; and the difference between the three potentially 

identical measurements (error with respect to the first one) for: (c) drier soil, (d) saturated soil 

 

Fig. 7. Reciprocity of background (soil only) transmission measurements at reciprocal transmitter and receiver 

depths (9” (22.9 cm) and 11” (27.9 cm)) in Boreholes 7 and 8 (4.6” (11.7 cm) antenna separation): (a) 

potentially identical measurements, (b) difference between the two potentially identical measurements 

(error) 

 

Fig. 8. Top view of the acrylic plate location in the soil 

 

Fig. 9. Symmetry of scattered field across Diagonal 2-6; depths of both transmitting and receiving antennas = 

11” (27.9 cm), for transmission along Axis 2-1 versus Axis 2-3 (4.6” (11.7 cm) antenna separation): (a) 

potentially identical measurements, (b) difference between the two potentially identical measurements 

(error) 

 

Fig. 10. Symmetry of scattered field across Diagonals 2-6; depth of transmitting antenna = 11” (27.9 cm) and 

depth of receiving antennas = 13” (33.0 cm), for transmission along Axis 2-1 versus Axis 2-3 (4.6” 

(11.7 cm) antenna separation): (a) potentially identical measurements, (b) difference between the two 

potentially identical measurements (error) 

 

Fig. 11. Asymmetry of scattered field across diagonal axes other than 2-6; depths of both transmitting and 

receiving antennas = 11” (27.9 cm), 8.5” (21.6 cm) antenna separation: (a) measurements, (b) scatterer 

response (i.e., difference between the two due to asymmetric positioning of scatterer) 

 

Fig. 12. Asymmetry of scattered field across diagonal axes other than 2-6; depth of transmitting antennas = 11” 

(27.9 cm) and depth of receiving antennas = 13” (33.0 cm), 8.5” (21.6 cm) antenna separation: (a) 

measurements, (b) scatterer response (i.e., difference between the two measurements due to 

asymmetric positioning of scatterer) 

 

Fig. 13. Schematic of antennas, scatterer locations and depths that provides depth asymmetry for scattered case 
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Fig. 14. Reciprocal background (soil only) transmission measurements at multiple depths, Boreholes 2 and 6, 

12” (30.50 cm) antenna separation: (a) Potentially identical measurements, (b) Difference between the 

two potentially identical measurements (error) 

 

Fig. 15. Non-reciprocal scattered transmission measurements at multiple depths, Boreholes 2 and 6, 12” (30.50 

cm) antenna separation: (a) measurements, (b) scatterer response (i.e., difference between the two 

measurements due to asymmetric positioning of scatterer) 
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