Out with the Old and in with the New: A Comparison Between Molecular and Traditional Techniques to Identify Parasitized Birds

Christian Guerrero

Department of Biological Sciences, Boise State University
Out with the Old and in with the New: A Comparison between Molecular and Traditional Techniques to Identify Parasitized Birds

Christian Guerrero, Michelle Laskowski, and Dr. Alfred Dufty Jr.
Department of Biological Sciences, Boise State University

Introduction
Traditionally, the identification of blood parasites has been based on the visual examination of blood smears. This approach depends on individual expertise in making blood smears and identifying parasites which can vary widely from person to person. Recent work shows that reading blood smears is significantly less sensitive than using molecular studies in identification. Thus, the accuracy of data can fluctuate greatly. This project compares the ability of investigators to identify infected birds using both blood smears and microscopes with their ability to identify infected birds through molecular analysis of blood from the same sample.

Methods
During the Fall 2011 migration (September – October), raptors were captured at the Idaho Bird Observatory in Boise, ID.
- Blood was drawn from either the jugular or wing vein
- Part of the blood was used to make blood smears and remainder was stored for further molecular studies
- Blood smears were later stained using Giemsa-Write Hematological Stain
- Slides were examined for parasites
- DNA was extracted from the stored blood using an EZ BioResearch mini-kit
- DNA was screened for Avian Malaria using specific Plasmodium, Haemoproteus and Leucocytozoon primers: HaemNFI, R3, F, R2, FL, and R2L

Traditional Approach
- Blood smears were analyzed through the use of a light microscope at 1,000 times magnification
- Morphological characteristics were used to verify parasitic organisms

Presence of Parasites in Blood Samples

<table>
<thead>
<tr>
<th>ID</th>
<th>Microscopy</th>
<th>PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>02062</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>07765</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>07805</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>09147</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>09194</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>15930</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>16648</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>16682</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>16695</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>28688</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Results
- Species within the Plasmodium, Haemoproteus, and Leucocytozoon genera were found to be parasitic
- Through Microscopy, three of ten samples were deemed parasitized
- Through PCR analysis, eight of ten samples were deemed parasitized
- The traditional method incorrectly passed five of eight parasitized samples as being free from parasites
- Only 37.5% of parasitized samples were read correctly

Molecular Approach
- Extracted DNA was analyzed using Polymerase Chain Reaction (PCR)
- Extracted DNA with PCR reagents were put through a thermal cycler to amplify Avian Malaria DNA sequence
- Amplified DNA was analyzed through electrophoresis and bands were examined under a UV light
- The presence of bands in the examination of the gel determines if parasitic DNA was extracted

Discussion
This comparative study reinforces the notion that visually inspecting blood smears is less accurate than confirming the presence of Avian Malaria through DNA analysis. This is due to the traditional method’s limitations which “fail to register many malaria parasite infections that are picked up by PCR Screening” (Fallon & Ricklefs). By placing a preference towards the more accurate molecular approach, the misdiagnosis and improper treatment of a parasitized bird will be kept at a minimum. Further work can improve the management and conservation efforts of wild raptors and their vectors.

Acknowledgements
- This project was funded by the National Science Foundation (NSF) under the Grant Number 0856815
- The Idaho STEP Program

References