4-11-2011

To Eat or Not to Eat? Developing Biomarkers for Diet Selection by Herbivores

Kristina Gehlken
Department of Biological Sciences, Boise State University

Peter Olsoy
Department of Biological Sciences, Boise State University

Amy Ulappa
Department of Biological Sciences, Boise State University

Nancy Glenn
Department of Geosciences, Idaho State University

Jennifer Forbey
Department of Biological Sciences, Boise State University
To eat or not to eat? Developing biomarkers for diet selection by herbivores

Kristina Gehlken¹, Peter Olsoy¹, Amy Ulappa¹, Nancy Glenn², and Jennifer Forbey¹
¹Boise State University, Department of Biological Sciences
²Idaho State University, Department of Geosciences

Background
A major goal in conservation biology is to explain habitat use by animals. Remote sensing has been used for landscape-scale analysis of habitat features. However, studies that directly link specific parameters of habitat quality to selection by wildlife are needed at the microsite-scale before landscape-scale mapping can be validated. We used the sagebrush-pygmy rabbit system (Fig. 1) to develop spectral biomarkers that can predict how the quality of food influences habitat use.

Objectives
Objective 1: Compare dietary quality of sagebrush on-mounds and off-mounds.
Objective 2: Show that high-browsed plants are higher in crude protein than low-browsed plants.
Objective 3: Develop a spectral biomarker that can predict crude protein and thus diet selection by pygmy rabbits.

Methods
• We quantified crude protein of sagebrush on- (n=27) and off-mounds (n=27) and from plants high- (n=30) and low-browsed (n=30) by pygmy rabbits.
• We then used a spectrophotometer to scan these same samples.

Plants differ within landscapes
• Crude protein was higher in sagebrush taken on-mound than off-mound (Fig. 3, P<0.0001).
• Crude protein was higher in plants highly browsed than plants less browsed by pygmy rabbits (Fig. 4, P=0.05).

Conclusions
• Variation exists: higher quality sagebrush closer to burrows
• Rabbits choose to browse plants with higher crude protein
• Preliminary spectral differences can be used to develop biomarkers
• Spectral biomarkers could provide a tool for the rapid assessment of quality food across landscapes (Fig. 6)
• Agencies armed with this tool would be able to better identify and conserve quality habitat for pygmy rabbits

Literature Cited

Each plant has a unique spectrum
• Preliminary data shows the spectra of sagebrush taken from on- and off-mounds are different at several wavelengths (Fig. 5).

Acknowledgements
This project was supported in part by NSF award number EPS-0814387 from the NSF Idaho EPSCoR Program and by the BLM CCS L09AC16253 grant awarded to J. Forbey.