
Boise State University
ScholarWorks
Electrical and Computer Engineering Faculty
Publications and Presentations

Department of Electrical and Computer
Engineering

4-1-2007

RNA Gene Finding with Biased Mutation
Operators
Jennifer A. Smith
Boise State University

This document was originally published by IEEE in the Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Bioinformatics and
Computational Biology. Copyright restrictions may apply.

http://scholarworks.boisestate.edu
http://scholarworks.boisestate.edu/electrical_facpubs
http://scholarworks.boisestate.edu/electrical_facpubs
http://scholarworks.boisestate.edu/electrical
http://scholarworks.boisestate.edu/electrical

RNA Gene Finding with Biased Mutation Operators

Scott F. Smith, Senior Member IEEE
Department of Electrical and Computer Engineering

Boise State University
Boise, Idaho 83725-2075 USA

sfsmith@boisestate.edu

Abstract-The use of genetic algorithms for non-coding

RNA gene finding has previously been investigated and
found to be a potentially viable method for accelerating
covariance-model-based database search relative to full
dynamic-programming methods. The mutation operators
in previous work chose new alignment insertion and
deletion locations uniformly over the length of the model
consensus sequence. Since the covariance models are
estimated from multiple known members of a non-coding
RNA family, information is available as to the likelihood of
insertions or deletions at the individual model positions.
This information is implicit in the state-transition
parameters of the estimated covariance models. In the
current work, the use of mutation operators which are
biased toward selection of insertions and deletions at
model positions with low insertion or deletion penalties is
examined in hopes of speeding up convergence. The
performance of the biased and unbiased mutation
operators is compared. Both biased and unbiased genetic
algorithms are also compared to a steepest-descent
algorithm, which is a comparison lacking in prior work.

I. INTRODUCTION

Covariance models (CMs) are an extension of profile

hidden Markov models (HMMs) which allow for RNA
intermolecular base pairing information to be captured [1,2].
The HMM can model primary sequence homology, which
makes it a good model for families of protein and protein-
coding gene sequences. However, most of the information
contained in an alignment of non-coding RNA sequences is in
the consensus base-pairing secondary structure. It is necessary
to use a model which captures the joint probability
distributions of the two base-paired positions (such as the CM)
rather than model that only uses the marginal distributions of
the individual positions (such as the HMM) to make use of
this secondary structure conservation information.

While the CM is a good model for RNA gene search, it is
much more computationally demanding than the HMM when
dynamic programming is used to find optimal scores. This
makes the use of a dynamic-programming CM database search
very expensive. The alternative of using a genetic algorithm
(GA) to search the space of database start positions, database
sequence lengths, and insertion/deletion patterns has been
proposed [3]. While this approach seems promising, the speed

of convergence is probably slower than it could be due to the
fact that insertion/deletion pattern space is explored without
regard to the probabilities of these insertions or deletions. In
this work, the exploration of new insertion and deletion
locations with uniform probability will be referred to as an
unbiased mutation operator. The alternative of choosing
locations with lower insertion or deletion penalties with higher
probability will be called a biased mutation operator.

Candidate solutions for putative RNA genes in the database
take the form of a database start position and an insertion/
deletion pattern of the database symbols with respect to the
consensus sequence of the RNA family model. The database is
first scanned using the ungapped consensus model for
promising database start positions. The search is then
expanded about these start positions by altering the insertion
and deletion pattern from the base ungapped pattern.

A comparison of the unbiased GA, biased GA, and a
steepest descent algorithm is made in the final section using
the same number of candidate solution evaluations in each of
the three algorithms. Before evaluating the three algorithms, a
discussion of how an individual candidate solution is scored
(regardless of the search algorithm) is given in Section II. This
is followed by a description of the three search algorithms in
Section III. The algorithm comparison results are presented in
Section IV and Section V contains some concluding remarks.

II. SCORING SEARCH CANDIDATES

Candidate alignments in each of the search algorithms are
represented by a starting position in the database and an
alignment vector V. This vector has the same length as the
consensus sequence of the RNA family model. Elements of
the alignment vector are non-negative integers. An element
value is 0, if the model position is to be deleted. If a vector
element is 1, a database symbol is matched to the model
position and no database symbols are inserted to the right of
the model position. If an element value n is greater than 1, a
database symbol is matched to the model position and n-1
database symbols are inserted to the right of the model
position. This representation does not allow a direct transition
from model position deletions to database symbol insertions.
This is not a major problem since this situation is extremely
rare in real biological sequences and is often disallowed in
sequence models anyway. This alignment representation has
been previously used by [4] in the context of protein
threading.

268

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

1-4244-0710-9/07/$20.00 ©2007 IEEE

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 16:41 from IEEE Xplore. Restrictions apply.

A. Scoring Algorithm
Given a candidate alignment vector V, it is necessary to

score the quality of the vector, no matter which search method
is used. The algorithm that follows implements this scoring
based on a set of position-specific scoring parameters. The
conversion of parameter values from the standard covariance
model (CM) file entries [5] to the required position-specific
values is the topic of the following subsection.

The algorithm for calculating the score contribution S(i) of
an alignment V starting at a given database location for a
particular model position i, is given in Figure 1. The index of
the first model position is 1 and a position of 0 is reserved to
mean no position. A vector of pair positions P is created such
that P(i) = 0 if the model position i is a single-emission
position, otherwise P(i) is the position paired with position i in
the model. A matrix of database symbols B that are aligned to
each model position is created using the database start location
and the alignment vector V. The vector B(i,●) has V(i) valid
entries, where B(i,1) is the symbol to match (if any) and B(i,j)
are the symbols to insert to the right of the consensus position
i for 2 ≤ j ≤ V(i). Normally, the entries in B would be one of
four numbers associated with the four possible bases A, C, G,
and T (or U).

If P(i) = 0 ; Unpaired position
 If V(i) = 0 ; Deleted position
 If V(i-1) = 0 ; Delete continuation
 S(i) = DC(i)
 Else ; Delete open
 S(i) = D(i)
 Else ; Match single
 S(i) = M[i,B(i,1)]
ElseIf P(i) > i ; Left position of pair
 If V(i) = 0 ; Left not present
 If V[P(i)] = 0 ; Right not present
 S(i) = D(i) ; Deleted pair
 Else ; Right present
 S(i) = MR{i,B[P(i),1]} ; Match right of pair
 Else ; Left present
 If V[P(i)] = 0 ; Right not present
 S(i) = ML[i,B(i,1)] ; Match left of pair
 Else ; Both present
 S(i) = M{i,B(i,1),B[P(i),1]} ; Match pair
If V(i) > 1 ; At least one insert
 S(i) = S(i) + I[i,B(i,2)] ; Insert open penalty
If V(i) > 2 ; More than one insert
 For j = 3 to V(i)
 S(i)=S(i)+IC[i,B(i,j)] ; Continuation penalties

Fig. 1. Scoring algorithm for one position in model.

The position-specific score parameters are contained in D

(delete open), DC (delete continuation), M (match), MR
(match right), ML (match left), I (insert open), and IC (insert
continuation). Match and insertion score parameters depend
on the database symbols matched or inserted. Delete score
parameters do not involve a database symbol and are therefore
a single value at each model position. The MR and ML
parameter matrices have four values at each model position
(one for each possible matched database symbol) and are only
used for paired model positions, where one of the pair
symbols is missing in the alignment. When a model position is
paired, all sixteen values in the M parameter matrix are used at
that position (one for each possible pair of matched database

symbols). When a model position is unpaired, only the first
four values in the M parameter matrix are used at that position.
The I and IC parameter matrices have four values at each
model position.

The overall score S of a candidate alignment vector V is the
sum of the model position scores S(i) over all model positions
i.

TABLE I

SCORING PARAMETER CALCULATIONS

Position i associated with a CM L node:
 M(i,DS) = tCM + eM(DS)
 D(i) = tCD
 DC(i) = tDD
 I(i,DS) = tCI + tIM + eI(DS)
 IC(i,DS) = tII + eI(DS)
Position i associated with a CM R node:
 M(i,DS) = tCM + eM[DS]
 D(i) = tCD
 DC(i) = tDD
 I(i-1,DS) = tCI + tIM + eI(DS)
 IC(i-1,DS) = tII + eI(DS)
Position i associated with a CM P node:
 M(i,LS,RS) = tCM + eM(LS,RS)
 ML(i,LS) = tCML + eML(LS)
 MR(i,RS) = tCMR + eMR(RS)
 D(i) = tCD
 DC(i) = tDD
 I(i,LS) = tCIL + tILM + eIL(LS)

 IC(i,LS) = tIIL + eIL(LS)
 I(i-1,RS) = tCIR + tIRM + eIR(RS)

 IC(i-1,RS) = tIIR + eIR(RS)

B. CM to Scoring Algorithm Parameter Conversion
In order to convert the transition and emission scores in a

standard CM model file into the form used by the algorithm in
Figure 1, the equations in Table I may be used. For left
emission (L) and right emission (R) CM nodes, DS means the
database symbol being matched or inserted. For pair emission
(P) CM nodes, LS and RS mean database symbols being
matched or inserted on the left or right sides respectively.
Transition scores are denoted t and emission scores e. The
subscripts refer to states within the node or child node. Since
CM bifurcation nodes are non-emitting and only bifurcation
nodes have more than one child, there is only one child node
in all cases in Table I. The C subscript denotes the consensus
state within the child node. The child consensus state is the
MP (match pair), ML (match left), MR (match right), B
(bifurcation), and E (end) state in the P (pair emission), L (left
emission), R (right emission), B (bifurcation), and E (end)
node respectively. All emission score subscripts refer to that
state within the node being evaluated. Transition score
subscripts with a C imply a transition from the consensus state
within the child node to a state within the node being
evaluated. The transition score tDD is between the delete state
of the child node and the delete state of the evaluated node.

269

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 16:41 from IEEE Xplore. Restrictions apply.

All other transition scores are between states in the evaluated
node.

The main thing that might at first seem odd in Table I is that
some of the insertion score parameter equations have i-1
rather than i as the consensus position. The reason is that extra
inserted symbols occurs first in a node before matching. For
left emissions (in L or P nodes), this results in the inserted
symbols being to the right of the match symbol. For right
emissions (in R and P nodes), the inserted symbols are to the
left of the match symbol. Since the calculated insertion scores
are for symbols inserted to the right of the consensus symbol,
the right emission insertions are on the wrong side. This can
easily be corrected by noting that insertions to the left of
position i are the same as insertions to the right of position i-1.

III. SEARCH METHODS

The search algorithms will be investigated for relative

performance on the problem of finding high scoring database
starting positions and insertion/deletion pattern combinations.
The first is a simple steepest descent algorithm that will be
used to determine if more complicated genetic algorithm
searches are really adding performance or just finding the
obvious. If the fitness landscape is devoid of significant areas
of local-optimum basins, then there is no need for an
algorithm such as a genetic algorithm designed to jump out of
these basins. The second two algorithms are variations on a
genetic algorithm search with and without biased mutation
operators. All algorithms will use the same initialization
scheme to find promising starting positions. The three
algorithms differ in how new trial insertion/deletion patterns
are chosen based on the scores of the candidate solutions
already evaluated.

A. Algorithm Initialization for all Search Algorithms

The database is scanned over every possible starting
position using the ungapped consensus sequence and
secondary structure of the model. This is equivalent to
evaluating one candidate solution at every database starting
position, each with an alignment vector composed of all 1s.
This will tend to give a higher score at starting locations near
true starting locations since some portion of the alignment is
likely to be ungapped. The portion of the alignment that is
incorrect due to improper gaps should just contribute noise to
the score in the same way that the entire alignment contributes
noise when the starting location is nowhere near a true RNA
family gene. As a result of the reduced signal (not all symbols
that could be aligned are) and increased noise (from
misaligned symbols), the ungapped scores will have a lower
signal to noise ratio than the best alignment at each database
starting position.

Candidate database starting positions are chosen from
among the highest-scoring positions in the ungapped database
scan. Due to the reduced signal to noise ratio, some of these
starting positions are likely to not be near a true gene and
expansion of the search about this database location will not
be fruitful. Starting positions that are near true genes should

see a score increase if the search is able to find a better
alignment.
B. Steepest Descent

The simple steepest descent algorithm used here evaluates a
solution one step in every direction from the current solution
and takes the best scoring solution among the initial solutions
and the newly evaluated solutions as the next solution. This is
repeated until the total number of allowed fitness evaluations
is consumed. Each candidate starting position gets the same
number of evaluations. After the all evaluation rounds are
finished, the candidate starting positions are ranked by score
for a ranked list of putative RNA genes.

Fig. 2. Compensating and zero variations in starting position.

The search directions investigated are the insertion of an

additional database symbol or the deletion of a database
symbol at each consensus position (leaving all other
representation vector values unchanged). These insertions or
deletions can be done with or without compensation to the
database starting position. The concept of compensation is
shown in Figure 2. Without compensation (top half of Figure
2), insertions push the model positions to the right of the
insertion point further right in the database. Deletions push the
model positions to the right of the deletion point to the left in
the database. The alignment between model and database to
the left of the insertion or deletion point is retained. This is
not helpful if the poorly aligned positions are near the left of
the model. With database starting position compensation, the
alignment to the right of the insertion or deletion point
remains unchanged and left portion of the alignment is shifted.
To make a compensating change to the database start position,
an amount equal in magnitude to the alignment vector

Unchanged
database
start position

Compensating Starting Position Variation:

New with insertion

New with insertion

Mutation

Initial alignment
New with deletion

Database

Mutation

Initial alignment
New with deletion

Database

Initial
database
Start position

Retained

Retained

Zero Starting Position Variation:

270

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 16:41 from IEEE Xplore. Restrictions apply.

consensus value change, but opposite in sign, must be made to
the database start position.

The resulting number of fitness evaluations per round for
this algorithm is 4L, where L is the number of consensus
positions in the model. In practice, this number is too large to
allow enough rounds to cover the total number of insertions
and deletions observed in real RNA families if the total
number of fitness evaluations is constrained to a value
previously shown to be adequate for genetic algorithm search.
In order to give the steepest descent a better chance against the
GA algorithms, an approximation is used to allow more
rounds and fewer evaluations per round. Instead of search over
the four types of changes (insertion, deletion, insertion with
compensation, and deletion with compensation) at every
consensus position, the four types are tested at every nth
position. An n value of 5 is used in the results section of this
work. This introduces a small reduction in the best achievable
score in that it may not be possible to align up to two of the
database symbols with the model, but the ability to go enough
rounds to generate the needed number of total insertions and
deletions is more important.

C. Genetic Algorithm with Unbiased Mutation

The genetic algorithm with unbiased mutation uses a
uniform distribution to choose an insertion or deletion point
and then chooses to compensate the database starting point or
not with one half probability of each. In each new generation
the fittest individual is retained without change (elitism).
Single-point crossover without mutation is applied to a
random pair of individuals from top portion of the fitness
ranking. In the results section, thirty five individuals per
generation were used and four new individuals were produced
each by crossing two individuals from the top twenty with
uniform probability.

Another group of new individuals is produced by single-
point mutation without crossover. In this group, the mutation
takes the form of adding or subtracting 1 from a single
alignment vector element. This is done with or without
compensation of the database start position with equal
probability. In the results section, twenty five of each
generation's individuals were generated this way and the
individuals to mutate were uniformly chosen from the top five
fitness individuals from the previous generation.

The last group of new individuals is produced with a larger
range of allowed mutation value changes. Single point
mutation is still used with and without compensation. In the
results section, five new individuals were generated from
uniformly selected past individuals in the top five of fitness.
The alignment vector changes were uniformly chosen in the
range +7 to -1. The justification for this is to allow the
algorithm to jump out of local minima when multiple
insertions appear at a consensus position. In this case, the
score may not monotonically increase as single insertions are
added. An exploration of the fitness landscape in the results
section indicates that this lack of monotonic behavior is likely.

D. Genetic Algorithm with Biased Mutation
The unbiased-mutation genetic-algorithm search does not

take into account that some mutation points are more costly in
terms of insertion or deletion penalties than others and are
therefore less likely to lead to an increased score. Rather than
select a mutation point uniformly along the representation
vector, some number p of potential mutation points are drawn
from a uniform distribution (p = 20 for the results in the next
section) and the potential mutation point with the lowest
insertion penalty is chosen from these p potential mutation
points if the mutation is positive. If the mutation is negative,
then the potential mutation point with the lowest deletion
penalty is chosen. In practice, positions along the consensus
sequence with low insertion penalties tend to be near positions
with low deletion penalties and vice versa. In other words,
there tend to be brittle ranges of the sequence where both
insertions and deletions are relatively common and conserved
ranges where insertions and deletions are uncommon.

IV. COMPARISION OF SEARCH METHODS

To investigate whether there might be some value to
implementing a genetic algorithm for this RNA gene search
over using a simple deterministic search and whether using
biased mutation further improves the search, the three
algorithms are compared on a data set composed of the
fourteen known U12 genes [6-8] and an assortment of
randomly chosen other non-coding RNA genes from the Rfam
database [9, 10]. The data set was generated by concatenating
all of the U12 and non-U12 gene sequences into a single
sequence of length 15880 bases. Since the regions between
the U12 genes are other RNA genes, they contain stem
structures that are more likely to incorrectly match the
covariance model for U12 than randomly generated bases.

The first step in the search for all three search methods
(steepest descent, unbiased GA, and biased GA) is an
ungapped scan of the database using the covariance model
single and pair matching parameters. Figure 3 shows the result
of this ungapped scan of the 149 base consensus sequence
against every possible 149 base window into the database
sequence. From the scores in Figure 3, the 100 best scoring
database start positions are chosen as initial search locations.
The fourteen stars in the figure show the correct database start
positions and the best possible score for each of the true U12
family members. Four of the fourteen cases can not be further
improved since the database sequence has no insertions or
deletions with respect to the consensus sequence. All three
search methods will finish with these four solutions since none
of them ever discard the best current solution. Eight of the true
family members have good initial scores, but have insertions
and/or deletions with respect to the model consensus
sequence. Searching over alignment patterns near these
database positions should bring the score up closer to the
optimal score, whereas searching alignment patterns near
peaks generated by noise should not increase the score much.
The search procedure is thus undertaken to improve the signal
to noise ratio between database positions of true family

271

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 16:41 from IEEE Xplore. Restrictions apply.

members and database positions without true family members.
Two of the true U12 family members have peaks which are
very close to the noise. In particular the peak at position 446
is only the 22nd highest peak even though there are only
fourteen true positives. This is a result of four different groups
of deletions relative to the consensus spread out over the
sequence such that there is no large ungapped subsequence for
this family member.

Fig. 3. Ungapped scores versus best gapped scores.

The three algorithms were then applied to the 100 initial

solutions. Each algorithm was allowed 70,000 additional
fitness evaluations in addition to the 100 initial fitness values.
In all three cases, these were distributed as 700 evaluations
starting at each of the 100 initial solutions. It is possible that
more intelligent algorithms would evaluate which of the 100
searches was progressing and which were stalled and
dynamically reallocate extra evaluations, but no such method
was implemented in this study.

For both GAs, the 700 evaluations per position were used as
20 generations with 35 individuals per generation. For the
steepest descent, six rounds were implemented with the best of
116 evaluations retained after the round. The steepest descent
algorithm evaluated increasing or decreasing every fifth
location in the representation vector both with and without
compensation of the database start position. Using
representation vector positions 5, 10, 15, ... , 145 as the test
points results in 29 tested positions. Each test position had
four possible changes (+1, -1, +1 with a decrease of database
start by 1, and -1 with an increase in database start position by
one).

Table II shows the fourteen U12 family members and the
scores obtained by the three search methods after the allowed
70,000 evaluations. The Database Start Position column
shows the true location of the sequence start in the database.
The scores for each method are the highest score from any of
the 100 solutions with a database start position in a window of
eleven positions about the true start position. Four of the cases
(9705, 10774, 13493, and 14615) are uninteresting since the

initialization already found the best possible alignment and
nothing the search algorithms did could possibly increase the
score. The scores for the two GAs are averages over ten runs
of each algorithm. It is clear that some of the alignments are
so easily found as to not be of much interest. These include
7406 where the steepest descent found the optimal solution
and both GAs found the optimal solution in ten out of ten
runs. Other cases that are not particularly interesting are 1039,
3858, 8880, 11624, where steepest descent found the optimum
and the GAs found the optimum most of the time. The most
interesting cases are 446 and 8196, where the initialization
scores (in units of bits relative to random sequence scores) are
unimpressive. In both these cases steepest descent failed to
improve on the initialization scores. However, both GAs
improved these scores to the point that they would clearly be
statistically significant even in a search of a very large
database. Two other cases (6096 and 12428) also showed a
rather large increase in score with the two GAs, whereas
steepest descent failed to make any headway. The remaining
case (2475) showed about half of the possible improvement no
matter which algorithm was used. The overall conclusion is
that the GAs did the best job of bringing the genes with the
lowest initial and optimal scores up. Since it is these marginal
cases that are of the most interest, the GAs would seem to be
the preferred method, at least on this limited set of test data.

TABLE II
SEARCH METHOD COMPARISION RESULTS

Database
Start

Position

Steepest
Descent
Score

Mean
GA

Score

Biased
Mean GA

Score

Accession Number /
Nucleotide Positions

446 -0.74 43.68 50.00 L43844.1/2-149
1039 146.37** 145.66 144.73 AC087420.4/142608-

142466
2475 124.95 123.88 125.06 AC112938.11/234142-

234291
3858 146.37** 143.34 146.37** AL591952.9/131760-

131611
6096 110.92 133.57 131.76 AL669944.8/2483-

2625
7406 159.12** 158.12** 159.12** AC133939.4/22042-

22191
8196 5.24 40.85 52.30 AC132590.3/81080-

80927
8880 147.13** 147.13** 138.13 AL772347.6/146375-

146226
9705 164.47* 164.47* 164.47* L43843.1/2-150
10774 159.12* 159.12* 159.12* L43846.1/332-480
11624 160.80** 160.30 159.70 J04119.1/2-150
12428 110.92 125.88 139.92 L43845.1/358-512
13493 164.47* 164.47* 164.47* Z93241.11/76642-

76790
14615 164.47* 164.47* 164.47* AL513366.11/57717-

57871
*Database sequence aligns to model without gaps. No improvement possible
over initial alignment.
**Search method finds the best possible alignment (steepest descent), or
found best possible alignment in all ten runs (GAs). No further improvement
possible.

272

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 16:41 from IEEE Xplore. Restrictions apply.

If one concludes, as we did above, that the GA is the better
algorithm, the next question is whether the added complexity
of biasing the mutation operator toward brittle portions of the
gene model is worthwhile. Table III shows a statistical
analysis of the difference between the mean scores of the
biased and unbiased GAs. Since twenty runs were used to
estimate the two means for each case, there are eighteen
degrees of freedom. The t-statistics associated with the
difference of the means are shown. These statistics could not
be calculated for the five cases where there was no variance.
There are four cases where one can reject the null hypothesis
that the means are the same in favor of the biased GA giving a
higher score. In all other cases the difference is not
statistically significant at any reasonable confidence level.
Two of the four statistically significant cases are the two
difficult cases of high interest. One concludes that biased
mutation is potentially worthwhile. Analysis of more data and
optimization of the parameter p (the number of potential
mutation points drawn before selecting an actual mutation
point) might lead to a firmer conclusion.

TABLE III

STATISTICAL SIGNIFICANCE OF BIASED SEARCH
IMPROVEMENT

Database
Start

Position

Biased -
Unbiased

Mean

t-

statistic

Significance
446 6.32 1.60 90%
1039 -0.92 -0.59 < 90%
2475 1.17 0.49 < 90%
3858 1.69 1.57 90%
6096 -1.81 -0.36 < 90%
7406 0 - -
8196 11.46 1.82 95%
8880 -1.43 -0.97 < 90%
9705 0 - -
10774 0 - -
11624 -0.60 -0.97 < 90%
12428 14.04 3.39 95%
13493 0 - -
14615 0 - -

With 18 degrees of freedom, the one-tailed t-statistic critical values for 90%
significance and 95% significance are 1.33 and 1.73 respectively. The null
hypothesis is that the means are equal and the alternative is that the biased GA
has a higher mean.

Finally, we investigate why the GA methods seem to

outperform the steepest descent algorithm. Figure 4 shows a
very small portion of the fitness landscape that is evaluated by
the search algorithms. The figure contains nine graphs
showing a search region around an alignment representation
vector composed off all ones with the exception of vector
position 60. The plot in the top row and middle column shows
deviations from a base ungapped alignment near the database
positions of one of the U12 genes (the U12 gene at 12428).
The plot in the upper left is similar except the deviations are
from a base with no gaps except a deletion of position 60. The
deviations take the form of scoring the alignment for all
position 30 alignment vector values in the range 0 to 9 and all

database start positions in the range 12425 to 12434. The U12
gene starting a database position 12428 has six inserted bases
after consensus position 34 and no other insertions or
deletions. The best possible alignment if we are only allowed
to change alignment vector positions 30 and 60 is to have the
values 7 and 1 respectively (resulting in only database
symbols 31, 32, 33, and 34 being misaligned). This can been
seen as the dark square at start deviation = 0, and
representation value 30 = 7 in the top middle plot. A
horizontal band a start deviation = 0 in each plot shows that
very good scores are generally found if the correct start
position in the database has been found. However, the slope
down to the optimum in each plot is not monotonic even once
the correct database start position is found. It is also apparent
that there are numerous local minima all over each of the
plots. The need for some sort of algorithm that can get out of
local minima is clear.

V. CONCLUSIONS

A continuation of the investigation started in [3] as to the

usefulness of genetic algorithms in accelerated covariance-
model-based non-coding RNA gene search was undertaken.
The genetic algorithm was compared with a simple
deterministic algorithm to see if the additional complexity of
the GA was generating any better performance. This
comparison was lacking in the previous study. It appears that
the GA (or some type of non-deterministic algorithm) is
justified. The possibility of biasing the search toward
alignments with insertions and deletions was also investigated.
Although the biased version studies here does seem to
outperform the unbiased version in a statistical sense, it is not
yet clear that the performance improvement is meaningful
overall. Tests on much larger data sets and parameter tuning
will be necessary if the conclusive statement about the worth
of this biased approach is to be made.

It should also be noted that the results of the unbiased GA
are not the same as in [3]. The reason for this is that the
original paper had one large population with diverse database
starting positions. A large elite (30 members) was maintained
with some complicated elite selection methods in order to
maintain this diversity. This only partially worked. The U12
genes at 446 and 8196 were not present in the final population.
Maintaining many separate populations has proved to work
much better, so that is the method used in this and likely all
future work.

ACKNOWLEDGMENT

The project described was supported by NIH Grant Number
P20 RR016454 from the INBRE Program of the National
Center for Research Resources.

REFERENCES

[1] S. Eddy, "Hidden Markov Models," Current Opinion in Structural
Biology, 6, pp. 361-365, 1996.

273

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 16:41 from IEEE Xplore. Restrictions apply.

[2] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence
Analysis, Cambridge University Press, 1998.
[3] S. Smith, "Covariance Searches for ncRNA Gene Finding," IEEE Symp.
on Computational Intelligence in Bioinformatics and Computational Biology,
pp. 320-326, 2006.
[4] J. Yadgari, A. Amir, and R. Unger, "Genetic Threading," Constraints 6,
pp. 271-292, 2001.
[5] Infernal Users Guide, http://www.genetics.wustl.edu/eddy/infernal/.
[6] G. Shukla and R. Padgett, "Conservation of Functional Features of U6atac
and U12 snRNAs Between Vertebrates and Higher Plants," RNA, 5, pp. 525-
538, 1999.

[7] W. Tam and J. Steitz, "Pre-mRNA Splicing: The Discovery of a New
Spliceosome Doubles the Challenge," Trends in Biochemical Science, 22, pp.
132-137, 1997.
[8] L. Otake, P. Scamborova, and J. Steitz, "The Divergent U12-type
Spliceosome is Required for Pre-mRNA Splicing and is Essential for
Development in Drosophila," Mol Cell, 9, pp. 439-446, 2002.
[9] Rfam website, http://rfam.janelia.edu.
[10] S. Griffiths-Jones, A. Bateman, M. Marshall, A. Khanna, and S. Eddy
“Rfam: An RNA Family Database,” Nucleic Acids Research, Vol. 31, No. 1,
pp. 439-441, 2003.

Fig. 4. Example fitness landscape.

274

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 16:41 from IEEE Xplore. Restrictions apply.

	Boise State University
	ScholarWorks
	4-1-2007

	RNA Gene Finding with Biased Mutation Operators
	Jennifer A. Smith

	RNA Gene Finding with Biased Mutation Operators

