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Abstract

We examine the effects of the 1990 Clean Air Act Amendments (CAAAs) on ambient con-
centrations of PM10 in the United States between 1990 and 2005. We find that non-attainment
designation has no effect on the ‘average monitor’ in non-attainment counties, after controlling
for weather and socioeconomic characteristics at the county level. In sharp contrast, if we allow
for heterogeneous treatment by type of monitor and county, we do find that the 1990 CAAAs
produced substantial effects. Our best estimate suggests that PM10 concentrations at moni-
tors with concentrations above the national annual standard dropped by between 7µg/m3 and
9µg/m3, which is roughly equivalent to a 11-14% drop. We also show that monitors which were
in violation of the daily standard experience two fewer days in violation of the daily standard the
following year. Empirical results suggest that this treatment effect is independent of whether
the EPA has finalized the non-attainment designation.
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1. Introduction

Two empirical regularities characterize the changes in the spatial distribution of particulate matter

less than 10 microns in diameter (PM10) in the United States between 1990 and 2005: First, average

county level ambient concentrations of PM10 dropped by about 18%. Second, there was substantial

spatial heterogeneity in reductions of PM10. Monitors which recorded ambient concentrations above

the federal standard experienced drops that were greater than the average of the remaining monitors

in the same county.

This naturally raises the following two questions: First, what is the effect of the 1990 Clean Air

Act Amendments (CAAAs) on ambient concentrations of PM10? Second, what is the level of spatial

aggregation - county versus monitor level - needed for the effects of the regulation to be properly

captured? This paper attempts to shed light on these questions by combining monitor level data

on annual average PM10 concentrations from the EPA’s Air Quality System (AQS) between 1990

and 2005 with data from the Code of Federal Regulations (CFR) on county PM10 attainment status.

We ask whether county non-attainment status is responsible for the drops in PM10 experienced in

non-attainment counties.

Further, we examine the spatial distribution of these changes. The need for a spatially dis-

aggregate analysis arises from the way the regulation is written, which in turn was likely motivated

by the understanding of the health effects. The NAAQS specifies that a county is designated as

non-attainment if any of the monitors within the county are in violation of the federal standard.

This may lead to a heterogeneous treatment effect within counties, where local regulators focus their

attention on monitors recording concentrations in violation of the federal standard and “ignore” the

remaining monitors in the county.1

The epidemiological literature on the mortality impacts of particulate matter provides a clear

motivation why federal regulators focused their attention on dirtier areas when designing the reg-

ulation. Early studies examining the dose response function for particulate matter and mortality

assumed that the logarithm of mortality is linear in concentrations, suggesting a non-linear relation-

ship between mortality and concentrations [6]. This convex damage function implies that reducing

ambient concentrations at a dirty location by e.g. 10 µg/m3 of PM10 may lead to a better overall

1

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online 
 at Journal of Environmental Economics & Management (doi: 10.1016/j.jeem.2008.12.004) published by Elsevier.   
Copyright restrictions may apply.



health outcome than reducing concentrations by the same amount at a cleaner location. Only a

spatially disaggregated analysis will have the ability to disentangle these heterogenous impacts of

regulation.

Over the years, researchers have made considerable strides in measuring the effects of federal

environmental regulations on ambient concentrations of several criteria pollutants. Studies vary by

the time period, type of pollutant and level of data aggregation (county averages versus monitor level

observations). [11] investigated the effects of ground level Ozone regulations in the United States for

the period 1977-1987 on air quality and the migration of polluting facilities using concentrations of

Ozone measured at the monitor level. He finds that county non-attainment status - the centerpiece of

the CAAAs - led to a statistically significant 8.1% decrease in the median daily maximum concentra-

tions for the month of July. He finds a weak or not statistically significant effect for three additional

measures of Ozone concentrations examined.2 Along the same lines, [2] and [3] examined the effects

of total suspended particulates (TSPs) on infant health and capitalization of air quality into property

values induced by the 1970 Clean Air Act Amendments. In their first stage regressions they find

a statistically significant effect of predicted non-attainment status on mean annual concentrations

of TSPs averaged to the county level. The estimated impact is between 9-12% for 1971-72 TSP

concentrations and 11-12% for the 1975-76 non-attainment status on the difference between 1977-80

and 1969-72 concentrations. Both of these papers use ambient concentrations averaged across all

monitors for each county. More recently, [9] examined the effects of the 1970 and 1990 CAAAs on

county averaged Sulfur Dioxide (SO2) concentrations. Using difference-in-difference and propensity

score matching techniques, he shows evidence that the non-attainment designation at the county level

did not have a detectable impact on average within county monitor concentrations for non-attainment

counties.

Our interest here lies in examining whether due to the lack of a spatially-disaggregated analysis

that can capture the heterogeneity in regulatory impact on ambient concentrations, these studies may

have potentially “averaged out” the true effects of environmental regulation. This issue arises if air

quality managers focus their regulatory efforts on “dirtier” parts of counties and reduce ambient

concentrations by substantially larger amounts there as compared to “cleaner” areas of the same

county. By averaging concentrations across low concentration and high concentration monitors for a

2
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given county one potentially averages away a source of policy induced variation. In the extreme case,

this averaging could lead one to conclude that policy is responsible for only minor or no reductions

in ambient concentrations of criteria pollutants. They may have, however, reduced concentrations

significantly in the worst air quality regions, yet have left air quality somewhat constant in the cleaner

parts of a county.

Studies using monitor level data suffer from a similar version of this problem, since they esti-

mate an average treatment effect for all monitors in non-attainment counties. By modeling regulatory

impacts via a non-attainment dummy, the estimated coefficient captures the average effect of non-

attainment status across all monitors in a county. If there is underlying heterogeneity, one may falsely

conclude that policy had no impact on ambient concentrations.

Finally, these studies implicitly assume that there is no regulatory effect in attainment counties.

This assumption is only valid if the threat of non-attainment status designation does not lead to

changes in monitor level concentrations in attainment areas.

This paper differs from the prior literature in three distinct ways. First, we look at the impact

of federal air quality regulation on particulate matter less than 10 microns in diameter, which is often

considered to be the “pollutant of the 90s”. Second, while we conduct our analysis at the monitor

level (as does [11]) we allow the regulation to have a differential effect on concentrations measured

at the monitoring site depending whether a county is in attainment or not and whether a specific

monitor was in violation of the federal standard in the previous period. Finally using previously

unavailable weather data, we are able to control for weather impacts at the monitor (instead of the

county average) level, allowing for within county heterogeneity of rainfall and temperature.

We address these issues by combining annual average concentrations of PM10 at the monitor

level between 1990 and 2005 with county attainment designations for PM10. Additional data were

collected to account for other determinants of changes in PM10, including climate and economic

activity. We further control for monitor and year fixed effects as well as monitor specific time trends

to remove any unobservable confounding factors constant and/or varying by monitor and year.

We use these data to estimate two sets of models. The first is a model that, for PM10,

replicates existing studies of the effects of environmental regulations at the county level on other

criteria pollutants [9]. The second is a more spatially disaggregated model where we allow for the

3
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possibility of heterogeneous impacts of the regulation based on the concentration at monitors which

recorded concentrations in violation of the federal standard. We estimate these two sets of models

separately for violations of the annual and daily federal standard.

The rest of the paper is organized as follows. Section 2 provides a brief overview of PM10

regulation; section 3 describes the data sources and provides summary statistics on the trends in

monitoring and PM10 concentrations between 1990 and 2005. Section 4 presents the econometric

models and section 5 the results. Section 6 concludes.

2. Basic Aspects of PM10 Regulation

2.1 Brief Historical Facts About PM10 Regulation

Particulate Matter is a term used for a class of solid and liquid air pollutants. Total suspended

particulates (TSPs) include particles less than 100 microns in diameter. The 1971 Clean Air Act

authorized the Environmental Protection Agency to enforce a National Ambient Air Quality Standard

(NAAQS) for TSPs. The standards for TSPs were phrased as primary and secondary standards.

“Primary standards set limits to protect public health, including the health of sensitive populations

such as asthmatics, children, and the elderly. Secondary standards set limits to protect public welfare,

including protection against decreased visibility, damage to animals, crops, vegetation, and buildings”

(see [16] for further discussion). Each standard is defined in terms of an annual benchmark average as

well as 24 hour benchmarks. From April 30th 1971 until July 1st 1987 the primary annual standard

for TSPs was 260 µg/m3 for the 24-hour average and 75 µg/m3 for the annual average. The secondary

standard for TSPs was 150 µg/m3 for the 24-hour average and 60 µg/m3 for the annual average [13].

If a single monitor within a county exceeded the primary annual standard for one year or the

primary 24-hour standard for more than a single day per year the entire county was considered to

be in violation of the standard. By provisions in the Clean Air Act, the EPA can move to designate

a county “non-attainment”. After a lengthy review process, a non-attainment county was required

to submit, in a state implementation plan (SIP), the strategy that it intends to use to become in

attainment with the NAAQS. If the deficiency remains uncorrected, or if the EPA “finds that any

4
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requirement of an approved plan (or approved part of a plan) is not being implemented”, the county is

given 18 months to correct the deficiency. If the deficiency is not corrected the EPA administrator may

impose sanctions on the county in violation, including the withholding of federal highway funds, and

the imposition of technological “emission offset requirements” on new or modified sources of emissions

within the county [14]. In the first stage of the sanctioning process only one of the sanctions is applied

at the discretion of the EPA Administrator; if the county continues to be in violation 6 months after

the first sanction, then both are applied. These sanctions are enforced not at the state level, but at

the political subdivisions that “are principally responsible for such deficiency” [13].

In 1987, the U.S. Environmental Protection Agency refined their particulate policy to regulate

particulates less than 10 micrometers in diameter (PM10). The new standard required the annual

arithmetic mean of PM10 concentration for each monitor in a county to be less than 50 µg/m3. It

further required that the 24 hour average concentrations at a monitor do not exceed 150 µg/m3.

In contrast to TSPs, for PM10 the primary and secondary standards were identical. This change

was implemented because a growing body of scientific evidence indicated that the greatest health

concern from particulate matter stemmed from PM10, which can penetrate into sensitive regions of

the respiratory tract.3

2.2 Local Regulatory Behavior

To understand the behavior of the local regulator, we emphasize the fact that federal regulators set

federal standards with the understanding that the ultimate goal of the regulation is to protect public

health. As such, and because of the non-linearities between pollution levels and health impacts, the

federal regulator requires that, for a county to be in attainment, none of the monitors in that county

can exceed the primary annual standards. The local regulators objective in turn is to minimize costs

for the county. These costs consist of regulation costs (e.g. fines and SIP) as well as costs to lower

PM10 levels. The federal regulation creates an incentive for the local regulator to closely track the

monitors that put the county at risk of becoming out of attainment. The regulator then allocates

effort in terms of monitoring and enforcement activities to the different monitors by comparing the

future costs of getting out of attainment to the present costs associated with the reduction in the

5
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emissions around risky monitors. The resulting equilibrium is a schedule of heterogeneous monitoring

efforts such that more effort is allocated to dirtier monitors, resulting in the maximized net benefit

of emissions reductions.

2.3 Sources of PM10 Pollution

Particulate matter enters the atmosphere in one of two ways: primary particulate matter is emitted

directly into the atmosphere as a solid or liquid; secondary particulate matter is formed in the

atmosphere by reactions between precursor gases such as organic gases, nitrogen oxides (NOx), and

sulfur oxides (SOx). In general, the contribution of the secondary PM10 precursor gases to total

ambient PM10 is substantially larger than the contribution of primary particulate matter.

In California, for example, the California Air Resources Board estimates that in the year 2000,

there were approximately 2,400 tons of primary PM10 emitted on a daily basis. Of these 2,400 tons,

6% was emitted by stationary industrial sources, 5% was emitted directly from mobile sources, 15%

was generated from paved roads, and the remaining 74% was produced by area-wide sources. The

area-wide sources include residential fuel combustion (7%), farming operations (9%), construction

and demolition (9%), unpaved road dust (27%), fugitive windblown dust (12%), and burning and

waste disposal (10%).

In addition to the primary PM10 emissions, 10,847 tons of secondary PM10 precursor gases

were emitted into the atmosphere on a daily basis in California in the year 2000. These precursor

gases include 3,591 tons of NOx, 333 tons of SOx, and 6,923 tons of organic gases [1]. The actual

contribution of the secondary PM10 precursor gases to ambient PM10 concentration levels depends on

the ambient concentrations of the precursor gases themselves, as well as the atmospheric chemistry

of the region, including the relative humidity, temperature, wind speed and direction [8]. In this

case one may find two areas with similar secondary PM10 precursor gas releases that have different

secondary PM10 ambient concentrations, depending on their location-specific characteristics. In the

case of the South Coast Air Basin, the PM10 reduction efficiency calculations, which allow one to

estimate the primary and secondary emissions required to produce a single unit increase in the

ambient concentration of PM10, indicate that NOx emissions in 1990 contributed to over half of the
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total ambient PM10 concentration [8].

3. Overview of the Trends in PM10 Concentra-

tions and Regulations

To implement the analysis, we compiled the most detailed data available on concentrations, at-

tainment status and other relevant determinants of concentrations, including climate and economic

activity. This section describes the data sources and presents summary statistics on national trends

in PM10, the distribution of monitors and mean concentrations.

3.1 PM10 Concentrations and Attainment Status Data

The concentrations data were obtained from the Air Quality Standards (AQS) database, which is

maintained by the EPA. For each PM10 monitor reporting to the EPA, these data include a number

of monitor characteristics including the location of the monitor. Title 40 Part 58.12 and Title 40 Part

50 Appendix K of the Code of Federal Regulations prescribe the monitoring frequencies for PM10

monitors, as well as criteria for establishing whether a monitor is “representative” and therefore

should be used in rule making.4 For estimation purposes, we used the valid weighted annual mean at

each monitor, which was provided by the EPA.5

The annual county attainment status designations were copied from the annual CFR. Since for

PM10 the primary and secondary standards are identical we have a single indicator of non-attainment

for each county and year.

3.2 Additional Data: Attainment Status for other criteria pollutants,

Climate and Economic Activity

We supplement the data on PM10 concentrations and attainment status with additional relevant data,

reflecting the need to capture other determinants of the change in PM10. Since attainment status

is not only assigned for PM10, but for five other criteria pollutants, it is important to separate the
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impact of policy induced reductions in precursor emissions to the pollutant of interest. We therefore

control for yearly county non-attainment status for TSP, Ozone, SOx and NOx collected from the

CFR.6

In addition to regulation, there are other physical factors influencing ambient concentrations

of PM10. Temperature and rainfall affect the formation of secondary PM10 as well the presence of

primary particulates. Since microclimates vary greatly within states and large counties, we do not use

county averages, but use rainfall and temperature at the monitor location. We control for February

and July rainfall and temperatures, which have been shown to be highly correlated with particulate

concentrations, since they proxy for how cold/wet each winter was and how warm/dry each summer

was at the monitor level. We use the [15] dataset, which provides monthly data based on all US

weather stations extrapolated to a set of 4 km2 grids covering the continental United States between

1990 and 2005, allowing us to construct weather observations at the pollution monitor location.

Finally, emissions of particulate matter are strongly correlated with economic activity. While

GDP is not available at the county level, the Bureau of Economic Analysis (BEA) releases annual

estimates of personal income at the county level. This indicator has been widely used in the Envi-

ronmental Kuznets Curve literature at the state level [12]. We include the real personal income for

each year and county in our sample. We also control for population and employment, using county

level estimates reported by the BEA. In the econometric analysis we will further control for monitor

specific time variant and invariant unobservables.

3.3 National Trends in Monitoring and Concentrations

Table I presents annual summary information for the monitors included in our analysis. The second

column reports the number of active monitors for each year. As a result of the 1990 CAAAs, both the

number of operating monitors and the geographical coverage of PM10 readings increased substantially

between 1988 and 2005. The number of active monitors increased roughly fourfold between 1988 and

1996; as the third column indicates, the number of monitored counties increased from 173 in 1988 to

543 in 1997. The peak in PM10 monitoring in 1997 is not surprising, since federal regulators began

a national program to monitor PM2.5 levels in 1997. At the peak of monitoring 172 million people
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lived in counties with at least one valid monitor, which represents roughly 65% of the US population.

Column (5) shows the number of monitored non-attainment counties. In 1990, for example, 64

non-attainment counties had at least one monitor satisfying the EPA data requirements mentioned

above. Column (6) displays the complete count of counties designated as non-attainment. In 1990,

76 counties were designated as being in non-attainment. The numbers in brackets report the counties

being newly designated as non attainment and back in attainment for each year respectively. From

1993 to 1994, for example, six counties were newly designated as being out of attainment raising

the number of non-attainment counties from 77 to 83. From 1994 to 1995 one county was newly

designated as being out of attainment and two counties were designated as being back in attainment

bringing the number of non-attainment counties down to 82 from 83. Identification in our model

comes from the monitors which are located in counties that go into or out of attainment over the

period covered by our sample. These monitors account for 22% of the monitors in the sample.7 Figure

(1) displays the spatial distribution of monitored counties by attainment status for our sample. The

overall spatial distribution of monitors reflects the EPA’s concerns of measuring concentrations in

highly populated areas.

Columns (7) and (8) in Table I indicate that average annual concentrations across all monitors

show a 18% decrease between 1990 to 2005. In addition the variability in emissions as measured by the

standard deviation has decreased by roughly 14%. For the entire sample the overall standard deviation

of ambient concentrations is 8.93 µg/m3, while the within monitor standard deviation is much smaller

at 3.62 µg/m3. Column (9) of the table displays the number of monitors in each year, which are in

violation of the daily standard, which also displays a downward trend. The question central to this

paper is to determine how much of this drop at which type of monitor is due to the CAAAs. Figure

(2) shows the trend of average annual concentrations in counties which were always in attainment in

the left panel. The right panel shows the trend in average ambient concentrations for counties which

were designated as non-attainment for at least one year of our sample. In absolute terms both types of

counties experienced a drop in mean concentrations of about 10µg/m3 between 1988 and 2005. Casual

inspection of this figure could lead one to conclude that county-level attainment status does not have

a detectable impact on average concentrations. The goal of this paper is to determine whether indeed

attainment status affects all monitors in non-attainment counties, or whether regulation affects only
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monitors with concentrations above the federal standard.

Before attempting to identify the effects of regulation using econometric methods, it is worth

examining trends at three types of monitors at the time regulation was first introduced. Figure (3)

examines the changes in mean concentrations at a) monitors in counties which were in attainment

throughout the period of our sample (the control group) b) monitors in counties that were designated

as non-attainment in 1990, yet had concentrations below the federal standard and c) monitors in

counties that were designated as non-attainment in 1990, yet had concentrations above the federal

standard. The figure centers the three series according to their 1990 average concentration. The figure

shows quite clearly that the monitors in attainment counties (dotted line) and the attainment monitors

in non-attainment counties (triangles) followed an almost identical trajectory. The trajectory for

monitors in non-attainment counties which were in violation of the standard, is quite different. The

average concentrations at these monitors were increasing leading up to the regulation year 1990, which

is when a sharp trend reversal occurred and concentrations began to drop. Two years after the first

non-attainment status designations were put in place, concentrations at these dirties monitors were

roughly 6.5 µg/m3 lower than right before the designation year. This graphical evidence motivates

us to examine this effect conditional on confounding variables at the monitor level using econometric

methods, which is what we turn to in the next section.

4. Econometric Model

In this section, we describe the econometric strategy adopted to measure the effects of the CAAAs

on changes in concentrations. Let Dj,t be an indicator variable that equals one when county j

is designated as non-attainment in year t and 0 if it is in attainment. Let Y j
i,t denote the PM10

concentrations of monitor i in county j in year t. Consistent with the literature, our basic econometric

model is equation 1 below:

Y j
i,t = α1Dj,t + Xj,tβ + P i,tϕ + θt + δi + ηi,t (1)

where α1 is the parameter of interest and measures the difference in PM10 concentrations between
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non-attainment and attainment counties. Formally, α1 represents the average treatment effect of

attainment status in non-attainment counties, and is given by:

α1 = E
[
Y j

i,t|Dj,t = 1; Xj,t,P i,t

]
− E

[
Y j

i,t|Dj,t = 0; Xj,t,P i,t

]

where Xj,t is a vector of controls, which vary over time at the county level. These include non-

attainment status of monitors in county j for other criteria pollutants (i.e TSP, NOx, SOx and

Ozone) in the same year that Dj,t is measured, as well as county-level measures of income, population

and employment. P i,t is a vector of controls, which vary at the monitor level. In this paper we

include rainfall and temperature at the monitor level, as described in the data section. θt is a year

fixed effect that is common to monitors located in attainment and non-attainment counties, δi is a

monitor fixed effect that controls for monitor specific unobservables that are invariant over time and

ηi,t is the idiosyncratic unobserved error component. As is standard in the literature, we estimate

model (1) in first differences, which eliminates the monitor fixed effects:

∆Y j
i,t = α1∆Dj,t + ∆Xj,tβ + ∆P i,tϕ + θt + ∆ηi,t. (2)

From an estimation point of view, a specification in differences is conservative, since we remove

monitors which only have single years satisfying the EPA criteria. Differencing effectively limits

us to sites which report at least two adjacent years of data. The model described by equation

(1) is appropriate to measure the average effect of attainment status on the average PM10 county

concentrations. However, it does not allow us to disentangle the potential differential impact of the

non-attainment status on the three types of monitors of interest. We define a variable OOCi,t, which

is equal to one if monitor i had a recorded year t mean annual concentration greater than the federal

standard of 50µg/m3 and zero otherwise. We estimate two augmented specifications below, which

allow us to test for heterogeneous treatment effects at the three types of monitors:

∆Y j
i,t = α1∆Dj,t + α2∆Dj,t ·OOCi,t−1 + ∆Xj,tβ + ∆P i,tϕ + θt + ∆ηi,t, (3)

∆Y j
i,t = α1∆Dj,t + α2∆Dj,t ·OOCi,t−1 + α3∆(1−Dj,t) ·OOCi,t−1 + (4)
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∆Xj,tβ + ∆P i,tϕ + θt + ∆ηi,t.

The coefficient interpretation for α1 in equation (3) remains the same as in the standard

model given by equation (2). It captures the average change in concentrations at monitors in non-

attainment counties. α2 captures the average drop in concentrations at monitors which exceeded the

federal standard and are located in non-attainment counties. One could regard this as a treatment

of having exceeded the standard in a previous period. This specification only allows regulation to

affect ambient concentrations in non-attainment counties - albeit differentially for monitors in and

not in violation of the federal standard. We include OOCi,t−1 as a lag in levels since non-attainment

designation is based on concentrations in the past. Since the relevant unit of measurement is average

concentrations over a calendar year, regulators will take action if they observe that the criterion for

regulatory action is exceeded. Regulatory action will affect ambient concentrations with a lag, since

air quality managers do not directly control emissions sources. As a robustness check consistent with

[11], we also ran our models including Dj,t−1 instead of Dj,t and the results are virtually identical.

In equation (4) we allow for a heterogenous impact of regulation on concentrations. The

coefficient interpretation for α1 captures the drop in concentrations at monitors not-in violation of

the standard in counties which are designated as being out of attainment. α2 captures the average

drop in concentrations at monitors which have exceeded the federal standard in these non-attainment

counties. α3 captures the average drop in concentrations at monitors which have exceeded the federal

standard yet are located in attainment counties. A county can be in attainment even if a single monitor

was in violation of the federal standard in the previous year since non-attainment designation is based

on a three-year average, not a single year.

If the CAAAs did indeed not have an effect on ambient concentrations, we would expect all

α parameters to be statistically insignificant. However, a finding of α1 < 0 would imply that local

regulators targeted all monitors in non-attainment counties, regardless of whether a specific monitor

location was in violation of the federal standard or not. A finding of α2 < 0 would suggest that non-

attainment status designation led to decreases in ambient concentrations at monitors in violation of

the standard in the previous period. A finding of α3 < 0 would suggest that there was a reduction in

ambient concentrations at violating monitors in attainment counties following an exceedance of the
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federal standard. This outcome would suggest that the CAAAs do not only work through the actual

designation yet also through the threat of future non-attainment designation. Finally, it is not just

the absolute but also the relative magnitude of the coefficients. Specifically, a finding of α2 < α1

would suggest that regulators focus more on the dirtiest monitors to reach attainment (since these

are expected to be negative). A finding of α2 < α3 would suggest that regulators engage in higher

effort when the costs of regulation are highest since they are being forced to take actions to return

to attainment status through the State Implementation Plan.

5. Results

Table II displays the central results from the estimation conducted in differences. The entries are the

parameter estimates and their estimated standard errors in parentheses, which are calculated using a

covariance matrix clustered at the county level.8 In all models we control for income, February and

July temperature and precipitation non-linearly as quadratics. In addition, as in [9], we control for

annual county population and employment.9

Model (1) provides the estimates for equation (2). The key finding from the first specification

is that, after controlling for weather and socioeconomic characteristics as well time invariant unob-

servables at the monitor level, the county non-attainment designation does not explain a statistically

significant share of the variation in PM10 concentrations. In fact, the point estimate of the coefficient

is an increase in ambient concentrations of 0.173 µg/m3, yet this is not statistically different from

zero.

Once we estimate the augmented specification given in equation (3), we show that the signif-

icance and magnitude of the parameter estimate for α1 does not change, yet the coefficient estimate

for α2 is large and statistically different from zero at the 1% level. The interpretation of this point

estimate is that ambient concentrations at monitors, which have recorded concentrations above the

50 µg/m3 annual standard, have experienced a drop in concentrations of 5.43 µg/m3 relative to

compliant monitors in non-attainment counties, which is equivalent to an 8.9% decrease. This point

estimate leads us to believe that the CAAAs did have a significant effect on concentrations at monitor
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locations with recorded ambient concentrations above 50 µg/m3 in non-attainment counties.

Model (3) includes a dummy for monitors having recorded an annual average concentration in

excess of the annual standard during the previous period and being located in an attainment county.

The reason a monitor can have recorded concentrations in violation of the standard for a given year

and the county still being in attainment in the next period, is that non-attainment designation is

based on a three-year average, not a single year. The coefficient estimate for the parameter α3

is large, negative and statistically different from zero. The point estimate indicates that ambient

concentrations at monitors, that are located in counties not in violation of the national standard

but are still above the 50 µg/m3 national standard for non-attainment, have experienced a drop in

concentrations of 7.19 µg/m3. The coefficient estimate for α2 remains almost unchanged. While we

fail to reject the null of α2 = α3 in this model, we note that the point estimate for dirty monitors in

attainment counties is a larger negative number than for the non-attainment counties.10

Models (1) - (3) control for year and monitor specific unobservables. Models (4) - (6) add

monitor specific time trends to the model, which allows for differential trends in the unobservables

at the monitor level. The results are even stronger for these models. The estimated treatment effects

increase by roughly 1-2 µg/m3, suggesting that concentrations at monitors with concentrations higher

than the federal annual standard dropped by 7.57 and 8.11 µg/m3 in non-attainment and attainment

counties respectively.

We interpret these empirical results as being consistent with regulators taking strong action

at locations, which are out of attainment with a national standard. As outlined in section 2.2, the

motivation in non-attainment counties comes from being obligated to undertake measures to bring

all monitors in a county back into attainment. The motivation for air quality managers in attainment

counties is to prevent the future costs of being designated as non attainment.

The treatment effect so far has assumed a discrete threshold at the federal standard. One could

build an argument that there is a stronger regulatory response at monitors far above the standard.

We conduct the following two step experiment, which allows for a flexible functional form of the

response. The first step of the experiment sets the threshold for defining OOCi,t at a value φ ranging

from 10µg/m3 to 75 µg/m3. For each value of φ we estimate equation (4) and record our estimates

for α2 and α3 as well as their estimated standard errors. Figure (4)plots the point estimates and 90%
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confidence interval for the estimated α2 and α3 for each value φ. The plot shows a small negative

effect at low cutoff levels, yet the magnitude of the effect grows drastically as we let the cutoff value

increase. Testing for non-linearities, we cannot conclusively favor a linear versus an exponential fit, yet

it is clear that air quality managers take stronger actions at higher levels of ambient concentrations.

Further, the shape of the curve is not qualitatively different for attainment versus non-attainment

counties. It is quite apparent from both plots that the dirtier the monitor, the larger the response.

The results so far have focused on explaining impacts of regulation on annual average concen-

trations. Counties can be designated as being out of attainment by violating the daily standard as

well. We therefore estimate the same class of models, but using the number of days each monitor is

in violation of the daily standard as the dependent variable. As in the previous specifications, we use

county non-attainment status as our pooled measure of treatment. We then relax the pooled treat-

ment assumption by estimating separate treatment effects for monitors which were in violation of the

daily standard in the previous period for both attainment and non-attainment counties. Specifically,

OOCt−1 is now defined according to whether the monitor violated the daily standard in the previ-

ous period. Table III lists the results, which are qualitatively identical to those shown in Table II.

County non-attainment status does not have a statistically detectable effect on the number of daily

violations. However, monitors which had violated the standard in previous periods did experience

a drop of 3.05 days for non-attainment counties and a drop of 2.17 days for counties in attainment.

This suggests again, that regulation affects both types of counties at the monitors in violation of the

federal standard.

In order to check for robustness of our results, we conduct two additional estimations. First,

we exclude the years after PM2.5 was moved into regulatory focus. While all PM2.5 is also PM10, the

reverse is not true. Table IV shows these results in columns (1) - (3). The results are almost identical

to those presented in Table II. Next we acknowledge California’s long history of stringent air quality

regulation. While California is subject to the same federal standards, it has developed quite effective

air quality regulatory institutions, such as the California Air Resources Board and the Air Quality

Management Districts. These institutions have pioneered implementation of many regulatory tools,

such as the RECLAIM program. Southern California also has historically suffered from the worst

air quality in the nation. In order to ensure that California is not driving our results, we exclude
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California monitors from our sample and rerun the models including monitor specific time trends.

Models (4)-(6) in Table IV show these results. Again, these results are almost identical to those

shown in Table II reaffirming our confidence in the robustness of our results.

Finally we wanted to examine what we gain from using the monitor specific weather observa-

tions. Existing models in the literature have historically used weather measured at the county level.

In order to determine what we gain from using monitor level weather data, we conduct the following

experiment. We estimate model (6) from Table II without the weather variables. We then construct

”county-weather” observations by averaging each weather observation across monitors within a given

county. We then compare these estimated treatment effect parameters to the ones obtained in model

(6) from Table II. The estimated coefficients on the α parameters, which for space reasons are not

shown here, are almost identical across all three specifications. Introducing weather results in slightly

smaller point estimates on the treatment effects. The α coefficients for the county and monitor

weather specifications are identical to the second decimal. We also calculate the marginal effect for

each observation for February and July temperature as well as rainfall. We compare these estimated

marginal effects to the ones obtained from model (6). We find an almost perfect correlation between

the marginal effects from each approach. The smallest of the three Pearson correlation coefficients

is 0.9932. This is an encouraging result, reassuring us that the use of county averaged weather data

does not seem to introduce bias in the estimated coefficients in previous studies.

6. Conclusions

This study contributes to the literature on the effects of environmental regulation (e.g. [9, 11]) by

testing whether the decline in PM10 concentrations between 1990 and 2005 can be attributed to the

1990 CAAAs. A central point of this work was to stress the importance of spatially disaggregated

analysis motivated by a non-linear dose-response function between mortality and PM10 or the monitor

specificity of the federal regulation.

We have conducted our analysis at the monitor level and allowed the regulation to have a

differential impact on concentrations measured at the monitoring site depending whether a monitor
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recorded concentrations in violation of the national standard and whether a monitor is located in

a county designated as non-attainment. In addition to controlling for the standard determinants of

criteria pollutants changes, we use a novel weather data set, which allows us to construct weather

observations at the pollution monitor location.

Our key finding reveals the importance of spatially disaggregated analysis in order to properly

assess the effects of environmental regulations. First, we estimate a pooled treatment effect, which

captures the average drop in concentrations due to non-attainment designation across all monitors in

a county. For this specification we fail to reject the null hypothesis of no effect. When we allow for

an interaction between non-attainment designation and lagged exceedance of the national standard,

we find a statistically significant and sizeable effect. This heterogenous treatment effect suggests a

potential distributional impact of federal environmental regulations, by creating incentives for local

environmental regulators to target the dirtiest areas. Extending the specification, we find an identical

effect for monitors exceeding the national standard in the previous period in attainment counties.

The magnitude of the estimated effect ranges between 11% and 14%, which is similar to the effect

estimated for TSPs in the 1970s [2, 3]. Further, using a flexible functional form, we show that

reductions in ambient concentrations at dirtier monitors do not only occur right at the regulatory

threshold concentrations, but they are continuous starting at very low concentrations.
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Notes

1Conversations with local air quality managers confirm that special attention is paid to monitors with recorded

concentrations above the federal standard, regardless of county attainment status.

2The concentrations examined are second highest daily maximum concentration, mean annual reading, median of

daily maximum July and mean July reading. The mean July reading is significant at the 10% level.

3For a concise analysis of the health effects from exposure to PM10, see [5, 7, 10]. For an analysis of the impact of

air pollution on infant health, see [2, 4].

4In the AQS data, a criteria flag is set based on data completeness criteria so that if it is set to ”Y”, then the

assumption can be made that the data represent the sampling period of the year. These summary criteria are based

on 75% or greater data capture and data reported for all 4 calendar quarters in each year. EPA confirms that we are

using the correct sample of monitor readings.

5We exclude monitors located in Puerto Rico as well as monitor year observations, which are flagged as observations

tainted by “extreme natural events” beyond human influence.

6In 1997 the EPA began to regulate fine particulates. Non-attainment designations for fine particulates were first

assigned in 2005. We further do not control for lead non-attainment status.

7As a replication of EPA’s non-attainment designations, we ran a logit of the 1990 non-attainment designation

on an indicator of whether the three year moving average was in violation of the annual standard and an indicator

of 24-hour standard violations. As we would expect, a violation of the daily standard and a violation of the annual

standard result in equal increases in the probability of being designated as non-attainment. We correctly classified

89.41% of the observations based on this regression, which we interpret as a sign of adequate data quality. [9] also notes

having problems replicating the attainment status designation perfectly. The reason we may not be able to replicate

the attainment assignment perfectly, may be due to the fact that attainment status is assigned based on measured and

modeled air quality concentrations. We could not gain access to the modeled data from the EPA.

8We also estimated the covariance matrix by clustering at the monitor level and the results are almost identical.

9[11] controls for the number of polluting facilities at the county level. We do not have access to the confidential

PACE survey data, so cannot control for this. Since we show that the CAAAs work on dirty monitors in both

attainment and non-attainment counties, concerns about bias here are not warranted.

10While this difference is not statistically significant, one referee raised the concern that these point estimates may

be due to “other trends in PM regulation that only hit the dirtiest monitors, regardless of attainment status.” Since

we cannot explicitly test for this, we have run our models by allowing for attainment status specific trends and the

results are very similar.
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Figure 1: Monitored Counties and Attainment Status

®Attainment

Non Attainment

Note: Counties are included in the map if they appear in the data for at least two consecutive years. Counties

are shown as non-attainment if they were designated as such for at least one year of our sample.
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Figure 2: Trends of Ambient PM10 Concentration Levels by Attainment Status

22

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online 
 at Journal of Environmental Economics & Management (doi: 10.1016/j.jeem.2008.12.004) published by Elsevier.   
Copyright restrictions may apply.



Figure 3: Changes in PM10 Concentrations Prior and Post First Non-Attainment Status Designations
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Figure 4: Heterogeneous Treatment Effect for Varying PM10 Cutoff Levels

Note: The vertical axis for the left panel shows the estimated coefficient α2 on the variable I(PM10,t−1 > φ

& Non-Attainment) from model (6) in Table II. The vertical axis for the right panel shows the estimated coefficient

α3 on the variable I(PM10,t−1 > φ & Attainment) from model (6) in Table II. The original model (6) fixes φ at 50

µg/m3. In this figure we vary it from 10µg/m3 to 75µg/m3.
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Table II: Effect of Attainment Status and Lagged Standard Violations on PM10 Concentrations.

Regressand: ∆ PM10 (1) (2) (3) (4) (5) (6)
Non-Attainment (α1) 0.173 0.177 0.190 0.166 0.213 0.204

(0.60) (0.60) (0.60) (0.68) (0.69) (0.69)
I(PM10,t−1 >50 & Non-Attainment) (α2) -5.435 -5.450 -7.550 -7.567

(1.00)*** (1.00)*** (0.90)*** (0.90)***
I(PM10,t−1 >50 & Attainment) (α3) -7.191 -8.105

(1.16)*** (1.70)***
Monitor FEs Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes
Monitor Trends No No No Yes Yes Yes
Monitor Nonlinear Income Yes Yes Yes Yes Yes Yes
Monitor Nonlinear Weather Yes Yes Yes Yes Yes Yes
County Employment Yes Yes Yes Yes Yes Yes
County Population Yes Yes Yes Yes Yes Yes
Other County Attainment Yes Yes Yes Yes Yes Yes
Observations 10010 10010 10010 10010 10010 10010
R2 0.13 0.15 0.16 0.11 0.14 0.15
Monitor Count 1912 1912 1912 1912 1912 1912

Note: Standard errors are in parentheses and are clustered at the county level.
significant at 10%; ** significant at 5%; *** significant at 1%

Table III: Effect of Attainment Status and Lagged Standard Violations on Daily Violations (DVs)
PM10 Concentrations.

Regressand: ∆ Daily Violations (DVs) (1) (2) (3) (4) (5) (6)
Non-Attainment (α1) 0.043 0.050 0.058 0.038 0.062 0.071

(0.08) (0.08) (0.07) (0.10) (0.08) (0.08)
I(DVst−1 > 1 & Non-Attainment) (α2) -2.083 -2.090 -3.081 -3.105

(0.30)*** (0.30)*** (0.34)*** (0.34)***
I(DVst−1 > 1 & Attainment) (α3) -1.939 -2.171

(0.40)*** (0.29)***
Monitor FEs Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes
Monitor Trends No No No Yes Yes Yes
Monitor Nonlinear Income Yes Yes Yes Yes Yes Yes
Monitor Nonlinear Weather Yes Yes Yes Yes Yes Yes
County Employment Yes Yes Yes Yes Yes Yes
County Population Yes Yes Yes Yes Yes Yes
Other County Attainment Yes Yes Yes Yes Yes Yes
Observations 10010 10010 10010 10010 10010 10010
R2 0.01 0.16 0.2 0.01 0.21 0.24
Monitor Count 1912 1912 1912 1912 1912 1912

Note: Note: Standard errors are in parentheses and are clustered at the county level.
significant at 10%; ** significant at 5%; *** significant at 1%
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Table IV: Robustness Checks for Effect of Attainment Status and Lagged Standard Violations on
PM10 Concentrations: (1) - (3) Subsample Prior to PM2.5 Regulation; (4)- (6) Subsample Without
California

Regressand: ∆ PM10 (1) (2) (3) (4) (5) (6)
Non-Attainment (α1) -0.247 -0.214 -0.221 0.235 0.295 0.283

(1.54) (1.46) (1.46) (0.67) (0.67) (0.68)
I(PM10,t−1 >50 & Non-Attainment) (α2) -8.149 -8.15 -8.855 -8.86

(1.26)*** (1.26)*** (1.17)*** (1.18)***
I(PM10,t−1 >50 & Attainment) (α3) -6.98 -8.697

(1.96)*** (1.96)***
Monitor FEs Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes
Monitor Trends Yes Yes Yes Yes Yes Yes
Nonlinear Income Yes Yes Yes Yes Yes Yes
Nonlinear Weather Yes Yes Yes Yes Yes Yes
Other Attainment Yes Yes Yes Yes Yes Yes
California Included Yes Yes Yes No No No
Years > 1997 Included No No No Yes Yes Yes
Observations 6157 6157 6157 8867 8867 8867
R2 0.09 0.11 0.12 0.11 0.13 0.14
Monitor Count 1527 1527 1527 1725 1725 1725

Note: Standard errors are in parentheses and are clustered at the county level.
significant at 10%; ** significant at 5%; *** significant at 1%

27

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online 
 at Journal of Environmental Economics & Management (doi: 10.1016/j.jeem.2008.12.004) published by Elsevier.   
Copyright restrictions may apply.


	Boise State University
	ScholarWorks
	7-1-2009

	Measuring the Effects of the Clean Air Act Amendments on Ambient PM10 Concentrations: The Critical Importance of a Spatially Disaggregated Analysis
	Maximilian Auffhammer
	Antonio M. Bento
	Scott E. Lowe




