Isoform-Specific Heparan Sulfate Binding within the Amino-Terminal Noncollagenous Domain of Collagen α1(XI)

Document Type

Article

Publication Date

12-22-2006

DOI

http://dx.doi.org/10.1074/jbc.M608551200

Abstract

Collagen type XI is a constituent of the pericellular matrix of chondrocytes and plays a role in the regulation of fibrillogenesis. The amino-terminal domain of collagen type XI α1 chain is a noncollagenous structure that has been identified on the surface of cartilage collagen fibrils. The biochemical composition of the amino-terminal domain varies due to alternative splicing of the primary transcript. Recombinantly expressed α1(XI) aminoterminal domain isoforms were used in this study to investigate potential interactions. Purified products were analyzed for heparan sulfate binding properties. The results demonstrated that two additional binding sites exist within the α1(XI) aminoterminal domain, one within the amino propeptide and one within the variable region of the amino-terminal domain. Analysis of relative affinities indicated that the site located within the amino propeptide (site 1) was of similar affinity to sites that exist within the major triple helix of collagen type XI. Substitution of amino acid residues 147 to 152 within the amino propeptide by site-directed mutagenesis resulted in altered affinity for heparan sulfate. The binding site located within the variable region (site 2) demonstrated significantly higher affinity than other sites within the molecule. Displacement of collagen type XI within the pericellular matrix was observed in cell culture in the presence of excess heparan sulfate and by treatment with heparinase. These studies suggest two additional binding sites located within the noncollagenous amino-terminal domain that may play a role in the function of collagen type XI. The localization of collagen type XI within the pericellular matrix may be dependent upon interactions with heparan sulfate proteoglycans, and these are likely to take place in an isoform-specfic manner.

Share

COinS