Document Type


Publication Date



Unintended transfer of biological material containing DNA is a concern to all laboratories conducting PCR analysis. While forensic laboratories have protocols in place to reduce the possibility of contaminating casework samples, there is no way to detect when a reference sample is mislabeled as evidence, or contaminates a forensic sample. Thus there is public concern regarding the safeguarding of DNA submitted to crime labs. We demonstrate a method of introducing an internal amplification control to reference samples, in the form of a nullomer barcode which is based upon sequences absent or rare from publically accessible DNA databases. The detection of this barcode would indicate that the source of analyzed DNA was from a reference sample provided by an individual, and not from an evidence sample. We demonstrate that the nullomers can be added directly to collection devices (FTA paper) to allow tagging during the process of sample collection. We show that such nullomer oligonucleotides can be added to existing forensic typing and quantification kits, without affecting genotyping or quantification results. Finally, we show that even when diluted a million-fold and spilled on a knife, the nullomer tags can be clearly detected. These tags support the National Research Council of the National Academy recommendation that “Quality control procedures should be designed to identify mistakes, fraud, and bias” in forensic science (National Academy of Sciences, 2009).

Copyright Statement

NOTICE: This is the author’s version of a work that was accepted for publication in Journal of Forensic and Legal Medicine. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Forensic and Legal Medicine, Volume 20, Issue 5, (July 2013), DOI: 10.1016/j.jflm.2013.02.003.

Included in

Biology Commons